Combining Texts

All the ideas for 'The Advancement of Learning', 'Naturalism in Mathematics' and 'Katzav on limitations of dispositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


41 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Metaphysics is the best knowledge, because it is the simplest [Bacon]
     Full Idea: That knowledge is worthiest which is charged with least multiplicity, which appeareth to be metaphysic
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.6)
     A reaction: A surprising view, coming from the father of modern science, but essentially correct. Obviously metaphysics aspires to avoid multiplicity, but it is riddled not only with complexity in its researches, but massive uncertainties.
1. Philosophy / E. Nature of Metaphysics / 4. Metaphysics as Science
Natural history supports physical knowledge, which supports metaphysical knowledge [Bacon]
     Full Idea: Knowledges are as pyramides, whereof history is the basis. So of natural philosophy, the basis is natural history, the stage next the basis is physic; the stage next the vertical point is metaphysic.
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.6)
     A reaction: The father of modern science keeps a place for metaphysics, as the most abstract level above the physical sciences. I would say he is right. It leads to my own slogan: science is the servant of philosophy.
1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Physics studies transitory matter; metaphysics what is abstracted and necessary [Bacon]
     Full Idea: Physic should contemplate that which is inherent in matter, and therefore transitory; and metaphysic that which is abstracted and fixed
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.3)
     A reaction: He cites the ancients for this view, with which he agrees. One could do worse than hang onto metaphysics as the study of necessities, but must then face the attacks of the Quineans - that knowledge of necessities is beyond us.
Physics is of material and efficient causes, metaphysics of formal and final causes [Bacon]
     Full Idea: Physic inquireth and handleth the material and efficient causes; and metaphysic handleth the formal and final causes.
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.3)
     A reaction: Compare Idea 12119. This divides up Aristotle's famous Four Causes (or Explanations), outlined in 'Physics' II.3. The concept of 'matter', and the nature of 'cause' seem to me to fall with the purview of metaphysics. Interesting, though.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
     Full Idea: In the presence of other axioms, the Axiom of Foundation is equivalent to the claim that every set is a member of some Vα.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
     Full Idea: A 'propositional function' is generated when one of the terms of the proposition is replaced by a variable, as in 'x is wise' or 'Socrates'.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: This implies that you can only have a propositional function if it is derived from a complete proposition. Note that the variable can be in either subject or in predicate position. It extends Frege's account of a concept as 'x is F'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
     Full Idea: Both Cantor's real number (Cauchy sequences of rationals) and Dedekind's cuts involved regarding infinite items (sequences or sets) as completed and subject to further manipulation, bringing the completed infinite into mathematics unambiguously.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1 n39)
     A reaction: So it is the arrival of the real numbers which is the culprit for lumbering us with weird completed infinites, which can then be the subject of addition, multiplication and exponentiation. Maybe this was a silly mistake?
Completed infinities resulted from giving foundations to calculus [Maddy]
     Full Idea: The line of development that finally led to a coherent foundation for the calculus also led to the explicit introduction of completed infinities: each real number is identified with an infinite collection of rationals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
     A reaction: Effectively, completed infinities just are the real numbers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
     Full Idea: The stunning discovery that infinity comes in different degrees led to the theory of infinite cardinal numbers, the heart of contemporary set theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: It occurs to me that these huge cardinals only exist in set theory. If you took away that prop, they would vanish in a puff.
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
     Full Idea: By the mid 1890s Cantor was aware that there could be no set of all sets, as its cardinal number would have to be the largest cardinal number, while his own theorem shows that for any cardinal there is a larger.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: There is always a larger cardinal because of the power set axiom. Some people regard that with suspicion.
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
     Full Idea: An 'inaccessible' cardinal is one that cannot be reached by taking unions of small collections of smaller sets or by taking power sets.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
     A reaction: They were introduced by Hausdorff in 1908.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
     Full Idea: Even the fundamental theorems about limits could not [at first] be proved because the reals themselves were not well understood.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This refers to the period of about 1850 (Weierstrass) to 1880 (Dedekind and Cantor).
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
     Full Idea: I attach no decisive importance even to bringing in the extension of the concepts at all.
     From: Penelope Maddy (Naturalism in Mathematics [1997], §107)
     A reaction: He almost seems to equate the concept with its extension, but that seems to raise all sorts of questions, about indeterminate and fluctuating extensions.
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
     Full Idea: In the ZFC cumulative hierarchy, Frege's candidates for numbers do not exist. For example, new three-element sets are formed at every stage, so there is no stage at which the set of all three-element sets could he formed.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Ah. This is a very important fact indeed if you are trying to understand contemporary discussions in philosophy of mathematics.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
     Full Idea: To solve the Julius Caesar problem, Frege requires explicit definitions of the numbers, and he proposes his well-known solution: the number of Fs = the extension of the concept 'equinumerous with F' (based on one-one correspondence).
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Why do there have to be Fs before there can be the corresponding number? If there were no F for 523, would that mean that '523' didn't exist (even if 522 and 524 did exist)?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
     Full Idea: The set theory axioms developed in producing foundations for mathematics also have strong consequences for existing fields, and produce a theory that is immensely fruitful in its own right.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: [compressed] Second of Maddy's three benefits of set theory. This benefit is more questionable than the first, because the axioms may be invented because of their nice fruit, instead of their accurate account of foundations.
Unified set theory gives a final court of appeal for mathematics [Maddy]
     Full Idea: The single unified area of set theory provides a court of final appeal for questions of mathematical existence and proof.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Maddy's third benefit of set theory. 'Existence' means being modellable in sets, and 'proof' means being derivable from the axioms. The slightly ad hoc character of the axioms makes this a weaker defence.
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
     Full Idea: Set theoretic foundations bring all mathematical objects and structures into one arena, allowing relations and interactions between them to be clearly displayed and investigated.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: The first of three benefits of set theory which Maddy lists. The advantages of the one arena seem to be indisputable.
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
     Full Idea: The identification of geometric points with real numbers was among the first and most dramatic examples of the power of set theoretic foundations.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Hence the clear definition of the reals by Dedekind and Cantor was the real trigger for launching set theory.
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
     Full Idea: The structure of a geometric line by rational points left gaps, which were inconsistent with a continuous line. Set theory provided an ordering that contained no gaps. These reals are constructed from rationals, which come from integers and naturals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This completes the reduction of geometry to arithmetic and algebra, which was launch 250 years earlier by Descartes.
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
     Full Idea: Our much loved mathematical knowledge rests on two supports: inexorable deductive logic (the stuff of proof), and the set theoretic axioms.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I Intro)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Maybe applications of continuum mathematics are all idealisations [Maddy]
     Full Idea: It could turn out that all applications of continuum mathematics in natural sciences are actually instances of idealisation.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
     Full Idea: Crudely, the scientist posits only those entities without which she cannot account for observations, while the set theorist posits as many entities as she can, short of inconsistency.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.5)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
     Full Idea: The case of atoms makes it clear that the indispensable appearance of an entity in our best scientific theory is not generally enough to convince scientists that it is real.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: She refers to the period between Dalton and Einstein, when theories were full of atoms, but there was strong reluctance to actually say that they existed, until the direct evidence was incontrovertable. Nice point.
12. Knowledge Sources / D. Empiricism / 1. Empiricism
We don't assume there is no land, because we can only see sea [Bacon]
     Full Idea: They are ill discoverers that think there is no land, when they can see nothing but sea.
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.5)
     A reaction: Just the sort of pithy remark for which Bacon is famous. It is an obvious point, but a nice corrective to anyone who wants to apply empirical principles in a rather gormless way.
14. Science / A. Basis of Science / 3. Experiment
Science moves up and down between inventions of causes, and experiments [Bacon]
     Full Idea: All true and fruitful natural philosophy hath a double scale or ladder, ascendent and descendent, ascending from experiments to the invention of causes, and descending from causes to the invention of new experiments.
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.1)
     A reaction: After several hundred years, I doubt whether anyone can come up with a better account of scientific method than Bacon's.
14. Science / B. Scientific Theories / 5. Commensurability
Many different theories will fit the observed facts [Bacon]
     Full Idea: The ordinary face and view of experience is many times satisfied by several theories and philosophies.
     From: Francis Bacon (The Advancement of Learning [1605], II.VIII.5)
     A reaction: He gives as his example that the Copernican system and the Ptolemaic system both seem to satisfy all the facts. He wrote in 1605, just before Galileo's telescope. His point is regularly made in modern discussions. In this case, he was wrong!
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
People love (unfortunately) extreme generality, rather than particular knowledge [Bacon]
     Full Idea: It is the nature of the mind of man (to the extreme prejudice of knowledge) to delight in the spacious liberty of generalities, as in a champaign region, and not in the inclosures of particularity.
     From: Francis Bacon (The Advancement of Learning [1605], II.VIII.1)
     A reaction: I have to plead guilty to this myself. He may have pinpointed the key motivation behind philosophy. We all want to know things, as Aristotle said, but some of us want the broad brush, and others want the fine detail.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
     Full Idea: In science we treat the earth's surface as flat, we assume the ocean to be infinitely deep, we use continuous functions for what we know to be quantised, and we take liquids to be continuous despite atomic theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: If fussy people like scientists do this all the time, how much more so must the confused multitude be doing the same thing all day?
26. Natural Theory / A. Speculations on Nature / 2. Natural Purpose / c. Purpose denied
Teleological accounts are fine in metaphysics, but they stop us from searching for the causes [Bacon]
     Full Idea: To say 'leaves are for protecting of fruit', or that 'clouds are for watering the earth', is well inquired and collected in metaphysic, but in physic they are impertinent. They are hindrances, and the search of the physical causes hath been neglected.
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.7)
     A reaction: This is the standard rebellion against Aristotle which gave rise to the birth of modern science. The story has been complicated by natural selection, which bestows a sort of purpose on living things. Nowadays we pursue both paths.
26. Natural Theory / B. Natural Kinds / 1. Natural Kinds
The natural kinds are objects, processes and properties/relations [Ellis]
     Full Idea: There are three hierarchies of natural kinds: objects or substances (substantive universals), events or processes (dynamic universals), and properties or relations (tropic universals).
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Most interesting here is the identifying of natural kinds with universals, making universals into the families of nature. Universals are high-level sets of natural kinds. To grasp universals you must see patterns, and infer the underlying order.
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Least action is not a causal law, but a 'global law', describing a global essence [Ellis]
     Full Idea: The principle of least action is not a causal law, but is what I call a 'global law', which describes the essence of the global kind, which every object in the universe necessarily instantiates.
     From: Brian Ellis (Katzav on limitations of dispositions [2005])
     A reaction: As a fan of essentialism I find this persuasive. If I inherit part of my essence from being a mammal, I inherit other parts of my essence from being an object, and all objects would share that essence, so it would look like a 'law' for all objects.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
Essences are part of first philosophy, but as part of nature, not part of logic [Bacon]
     Full Idea: I assign to summary philosophy the operation of essences (as quantity, similitude, diversity, possibility), with this distinction - that they be handled as they have efficacy in nature, and not logically.
     From: Francis Bacon (The Advancement of Learning [1605], II.VII.3)
     A reaction: I take this to be a splendid motto for scientific essentialism, in a climate where modal logicians appear to have taken over the driving seat in our understanding of essences.
A species requires a genus, and its essence includes the essence of the genus [Ellis]
     Full Idea: A specific universal can exist only if the generic universal of which it is a species exists, but generic universals don't depend on species; …the essence of any genus is included in its species, but not conversely.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: Thus the species 'electron' would be part of the genus 'lepton', or 'human' part of 'mammal'. The point of all this is to show how individual items connect up with the rest of the universe, giving rise to universal laws, such as Least Action.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
A hierarchy of natural kinds is elaborate ontology, but needed to explain natural laws [Ellis]
     Full Idea: The hierarchy of natural kinds proposed by essentialism may be more elaborate than is strictly required for purposes of ontology, but it is necessary to explain the necessity of the laws of nature, and the universal applicability of global principles.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 91)
     A reaction: I am all in favour of elaborating ontology in the name of best explanation. There seem, though, to be some remaining ontological questions at the point where the explanations of essentialism run out.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
Without general principles, we couldn't predict the behaviour of dispositional properties [Ellis]
     Full Idea: It is objected to dispositionalism that without the principle of least action, or some general principle of equal power, the specific dispositional properties of things could tell us very little about how these things would be disposed to behave.
     From: Brian Ellis (Katzav on limitations of dispositions [2005], 90)
     A reaction: Ellis attempts to meet this criticism, by placing dispositional properties within a hierarchy of broader properties. There remains a nagging doubt about how essentialism can account for space, time, order, and the existence of essences.