Combining Texts

All the ideas for 'Intention', 'Demonstratives' and 'works'

unexpand these ideas     |    start again     |     specify just one area for these texts


8 ideas

5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Gentzen introduced a natural deduction calculus (NK) in 1934 [Gentzen, by Read]
     Full Idea: Gentzen introduced a natural deduction calculus (NK) in 1934.
     From: report of Gerhard Gentzen (works [1938]) by Stephen Read - Thinking About Logic Ch.8
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The inferential role of a logical constant constitutes its meaning [Gentzen, by Hanna]
     Full Idea: Gentzen argued that the inferential role of a logical constant constitutes its meaning.
     From: report of Gerhard Gentzen (works [1938]) by Robert Hanna - Rationality and Logic 5.3
     A reaction: Possibly inspired by Wittgenstein's theory of meaning as use? This idea was the target of Prior's famous connective 'tonk', which has the role of implying anything you like, proving sentences which are not logical consequences.
The logical connectives are 'defined' by their introduction rules [Gentzen]
     Full Idea: The introduction rules represent, as it were, the 'definitions' of the symbols concerned, and the elimination rules are no more, in the final analysis, than the consequences of these definitions.
     From: Gerhard Gentzen (works [1938]), quoted by Stephen Read - Thinking About Logic Ch.8
     A reaction: If an introduction-rule (or a truth table) were taken as fixed and beyond dispute, then it would have the status of a definition, since there would be nothing else to appeal to. So is there anything else to appeal to here?
Each logical symbol has an 'introduction' rule to define it, and hence an 'elimination' rule [Gentzen]
     Full Idea: To every logical symbol there belongs precisely one inference figure which 'introduces' the symbol ..and one which 'eliminates' it. The introductions represent the 'definitions' of the symbols concerned, and eliminations are consequences of these.
     From: Gerhard Gentzen (works [1938], II.5.13), quoted by Ian Rumfitt - "Yes" and "No" III
     A reaction: [1935 paper] This passage is famous, in laying down the basics of natural deduction systems of logic (ones using only rules, and avoiding axioms). Rumfitt questions whether Gentzen's account gives the sense of the connectives.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gentzen proved the consistency of arithmetic from assumptions beyond arithmetic [Gentzen, by Musgrave]
     Full Idea: Gentzen proved the consistency of arithmetic from assumptions which transcend arithmetic.
     From: report of Gerhard Gentzen (works [1938]) by Alan Musgrave - Logicism Revisited §5
     A reaction: This does not contradict Gödel's famous result, but reinforces it. The interesting question is what assumptions Gentzen felt he had to make.
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Indexicals have a 'character' (the standing meaning), and a 'content' (truth-conditions for one context) [Kaplan, by Macià/Garcia-Carpentiro]
     Full Idea: Kaplan distinguished two different semantic features of indexical expressions: a 'character' that captures the standing meaning of the expression, and a 'content' that consists of their truth-conditional contribution in particular contexts.
     From: report of David Kaplan (Demonstratives [1989]) by Macià/Garcia-Carpentiro - Introduction to 'Two-Dimensional Semantics' 1
     A reaction: This seems so clearly right that there isn't much to dispute. You can't understand the word 'I' or 'now' if you don't understand both its general purpose, and what it is doing in a particular utterance. But will this generalise to other semantics?
'Content' gives the standard modal profile, and 'character' gives rules for a context [Kaplan, by Schroeter]
     Full Idea: Kaplan sees two aspects of meaning, the 'content', reflecting a thing's modal profile, which is modelled by standard possible worlds semantics, and 'character', giving rules for different contexts. Proper names have constant character; indexicals vary.
     From: report of David Kaplan (Demonstratives [1989]) by Laura Schroeter - Two-Dimensional Semantics 1.1.1
     A reaction: This gives rise to 2-D matrices for representing meaning, and the possible worlds are used twice, for evaluating meaning and then for evaluating context of use. I've always been struck by the two-dimensional semantics of passwords.
20. Action / B. Preliminaries of Action / 1. Intention to Act / a. Nature of intentions
Intentional actions are those which are explained by giving the reason for so acting [Anscombe]
     Full Idea: Intentional actions are those to which a certain sense of the question 'Why?' is given application; the sense is of course that in which the answer, if positive, gives a reason for acting.
     From: G.E.M. Anscombe (Intention [1957], p.9), quoted by Rowland Stout - Action 2 'Two kinds'
     A reaction: This works better for grand large-scale actions than for small ones, like taking the knife out of the drawer before the fork. Kahnemann nowadays tells us that the reasons we articulate might not be the ones that are operative.