Combining Texts

All the ideas for 'On the Natural Faculties', 'Philosophy of Science' and 'Aspects of Scientific Explanation'

unexpand these ideas     |    start again     |     specify just one area for these texts


14 ideas

14. Science / A. Basis of Science / 4. Prediction
Explanatory facts also predict, and predictive facts also explain [Hempel, by Okasha]
     Full Idea: Hempel said every scientific explanation is potentially a prediction - it would have predicted the phenomenon in question, had it not already been known. But also the information used to make a prediction is potentially an explanation.
     From: report of Carl Hempel (Aspects of Scientific Explanation [1965]) by Samir Okasha - Philosophy of Science: Very Short Intro (2nd ed) 3
     A reaction: Sounds too neatly glib to be quite true. If you explain a single event there is nothing to predict. You might predict accurately from a repetitive pattern, with no understanding at all of the pattern.
14. Science / A. Basis of Science / 6. Falsification
Why abandon a theory if you don't have a better one? [Gorham]
     Full Idea: There is no sense in abandoning a successful theory if you have nothing to replace it with.
     From: Geoffrey Gorham (Philosophy of Science [2009], 2)
     A reaction: This is also a problem for infererence to the best explanation. What to do if your best explanation is not very good? The simple message is do not rush to dump a theory when faced with an anomaly.
If a theory is more informative it is less probable [Gorham]
     Full Idea: Popper's theory implies that more informative theories seem to be less probable.
     From: Geoffrey Gorham (Philosophy of Science [2009], 3)
     A reaction: [On p.75 Gorham replies to this objection] The point is that to be more testable they must be more detailed. He's not wrong. Theories are meant to be general, so they sweep up the details. But they need precise generalities and specifics.
14. Science / B. Scientific Theories / 1. Scientific Theory
Is Newton simpler with universal simultaneity, or Einstein simpler without absolute time? [Gorham]
     Full Idea: Is Newton's theory simpler than Einstein's, since there is only one relation of simultaneity in absolute time, or is Einstein's simpler because it dispenses with absolute time altogether?
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: A nice question, to which a good scientist might be willing to offer an answer. Since simultaneity is crucial but the existence of time is not, I would vote for Newton as the simpler.
Structural Realism says mathematical structures persist after theory rejection [Gorham]
     Full Idea: Structural Realists say that modern science achieves a true or 'truer' account of the world only with respect to its mathematical structure rather than its intrinsic qualities or nature. The structure carries over to new theories.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: At first glance I am unconvinced that when an old theory is replaced it neverthess contains some sort of 'mathematical structure' which endures and is worth preserving. No doubt Worrall, French and co have examples.
Structural Realists must show the mathematics is both crucial and separate [Gorham]
     Full Idea: Structural Realists must show that it is the mathematical aspects of the theories, not their content, that account for their success ….and that their structure and content can be clearly separated.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Their approach certainly seems to rely on mathematical types of science, so it presumably fits biology, geology and even astronomy less well.
14. Science / B. Scientific Theories / 3. Instrumentalism
Theories aren't just for organising present experience if they concern the past or future [Gorham]
     Full Idea: The strangeness of interpreting theories as mere tools for organising present experience is brought out clearly in sciences like cosmology and paleontology, which largely concern events in the remote past or future.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Not conclusive. An anti-realist has to interpret those sciences in terms of the current observations that are available.
For most scientists their concepts are not just useful, but are meant to be true and accurate [Gorham]
     Full Idea: The main difficulty with instrumentalism is its implausible account ot the meaning of theoretical claims and concepts. Most scientists take them to be straightforward attempts to describe the world. Most say they are useful because they are accurate.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: Instrumentalism is seen as a Pragmatist view, and Dewey is cited.
14. Science / D. Explanation / 2. Types of Explanation / d. Consilience
Consilience makes the component sciences more likely [Gorham]
     Full Idea: The more unification and integration is found among the modern sciences, the less likely it seems it will have all been a dream.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: I believe this strongly. Ancient theories which were complex, wide ranging and false do not impress me. This is part of my coherence view of justification.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
For Hempel, explanations are deductive-nomological or probabilistic-statistical [Hempel, by Bird]
     Full Idea: Hempel proposes that explanations involve covering laws and antecedent conditions; this view (the 'covering law' view) has two versions, the deductive-nomological model and the probabilistic-statistical model of explanation.
     From: report of Carl Hempel (Aspects of Scientific Explanation [1965]) by Alexander Bird - Philosophy of Science Ch.2
     A reaction: The obvious problem with this approach, it seem to me, is that the laws themselves need explanation, and I don't see how a law can be foundational unless there is a divine law-giver. Are the laws arbitrary and axiomatic?
The covering-law model is for scientific explanation; historical explanation is quite different [Hempel]
     Full Idea: To put forward the covering-law models of scientific explanation is not to deny that there are other contexts in which we speak of explanation. ….That it does not fit explaining the rules of Hanoverian succession is to miss the intent of our model.
     From: Carl Hempel (Aspects of Scientific Explanation [1965], p. 412-3), quoted by David-Hillel Ruben - Explaining Explanation Ch 1
     A reaction: Important to get that clear. It then requires a clear demarcation between science and the rest, and it had better not rule out biology because it is having a love affair with physics.
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Hempel rejects causation as part of explanation [Hempel, by Salmon]
     Full Idea: Hempel explicitly rejects the idea that causality plays any essential explanatory role.
     From: report of Carl Hempel (Aspects of Scientific Explanation [1965], p.352) by Wesley Salmon - Four Decades of Scientific Explanation 1.1
     A reaction: Hempel champions the 'covering-law' model of explanation. It strikes me that Hempel is so utterly wrong about this that his views aren't even a candidate for correctness, but then for a long time his views were orthodoxy.
15. Nature of Minds / C. Capacities of Minds / 1. Faculties
We just use the word 'faculty' when we don't know the psychological cause [Galen]
     Full Idea: So long as we are ignorant of the true essence of the cause which is operating, we call it a 'faculty'.
     From: Galen (On the Natural Faculties [c.170], I.iv), quoted by Dominik Perler - Intro to The Faculties: a History 2
     A reaction: This is probably the view of most modern neuroscientists. I want to defend the idea that we need the concept of a faculty in philosophy, even if the psychologists and neuroscientists say it is too vague for their purposes.
26. Natural Theory / A. Speculations on Nature / 1. Nature
Aristotelian physics has circular celestial motion and linear earthly motion [Gorham]
     Full Idea: Aristotelian physics assumed that celestial motion is naturally circular and eternal while terrestrial motion is naturally toward the center of the earth and final.
     From: Geoffrey Gorham (Philosophy of Science [2009], 4)
     A reaction: The overthrow of this by Galileo and then Newton may have been the most dramatic revolution of the new science. It opened up the possibility of universal laws of physics.