Combining Texts

All the ideas for 'Mathematics without Numbers', 'Paradox without Self-Reference' and 'works'

unexpand these ideas     |    start again     |     specify just one area for these texts


7 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Von Neumann defines each number as the set of all smaller numbers [Neumann, by Blackburn]
     Full Idea: Von Neumann defines each number as the set of all smaller numbers.
     From: report of John von Neumann (works [1935]) by Simon Blackburn - Oxford Dictionary of Philosophy p.280
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Von Neumann wanted mathematical functions to replace sets [Neumann, by Benardete,JA]
     Full Idea: Von Neumann suggested that functions be pressed into service to replace sets.
     From: report of John von Neumann (works [1935]) by José A. Benardete - Metaphysics: the logical approach Ch.23
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
An infinite series of sentences asserting falsehood produces the paradox without self-reference [Yablo, by Sorensen]
     Full Idea: Banning self-reference is too narrow to avoid the liar paradox. With 1) all the subsequent sentences are false, 2) all the subsequent sentences are false, 3) all the subsequent... the paradox still arises. Self-reference is a special case of this.
     From: report of Stephen Yablo (Paradox without Self-Reference [1993]) by Roy Sorensen - Vagueness and Contradiction 11.1
     A reaction: [Idea 9137 pointed out that the ban was too narrow. Sorensen p.168 explains why this one is paradoxical] This is a nice example of progress in philosophy, since the Greeks would have been thrilled with this idea (unless they knew it, but it was lost).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Von Neumann defined ordinals as the set of all smaller ordinals [Neumann, by Poundstone]
     Full Idea: At age twenty, Von Neumann devised the formal definition of ordinal numbers that is used today: an ordinal number is the set of all smaller ordinal numbers.
     From: report of John von Neumann (works [1935]) by William Poundstone - Prisoner's Dilemma 02 'Sturm'
     A reaction: I take this to be an example of an impredicative definition (not predicating something new), because it uses 'ordinal number' in the definition of ordinal number. I'm guessing the null set gets us started.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Modal structuralism says mathematics studies possible structures, which may or may not be actualised [Hellman, by Friend]
     Full Idea: The modal structuralist thinks of mathematical structures as possibilities. The application of mathematics is just the realisation that a possible structure is actualised. As structures are possibilities, realist ontological problems are avoided.
     From: report of Geoffrey Hellman (Mathematics without Numbers [1989]) by Michèle Friend - Introducing the Philosophy of Mathematics 4.3
     A reaction: Friend criticises this and rejects it, but it is appealing. Mathematics should aim to be applicable to any possible world, and not just the actual one. However, does the actual world 'actualise a mathematical structure'?
Statements of pure mathematics are elliptical for a sort of modal conditional [Hellman, by Chihara]
     Full Idea: Hellman represents statements of pure mathematics as elliptical for modal conditionals of a certain sort.
     From: report of Geoffrey Hellman (Mathematics without Numbers [1989]) by Charles Chihara - A Structural Account of Mathematics 5.3
     A reaction: It's a pity there is such difficulty in understanding conditionals (see Graham Priest on the subject). I intuit a grain of truth in this, though I take maths to reflect the structure of the actual world (with possibilities being part of that world).
Modal structuralism can only judge possibility by 'possible' models [Shapiro on Hellman]
     Full Idea: The usual way to show that a sentence is possible is to show that it has a model, but for Hellman presumably a sentence is possible if it might have a model (or if, possibly, it has a model). It is not clear what this move brings us.
     From: comment on Geoffrey Hellman (Mathematics without Numbers [1989]) by Stewart Shapiro - Philosophy of Mathematics 7.3
     A reaction: I can't assess this, but presumably the possibility of the model must be demonstrated in some way. Aren't all models merely possible, because they are based on axioms, which seem to be no more than possibilities?