Combining Texts

All the ideas for 'works', 'Introduction to Mathematical Philosophy' and 'Davidson on himself'

unexpand these ideas     |    start again     |     specify just one area for these texts


111 ideas

1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
'Socrates is human' expresses predication, and 'Socrates is a man' expresses identity [Russell]
     Full Idea: The is of 'Socrates is human' expresses the relation of subject and predicate; the is of 'Socrates is a man' expresses identity. It is a disgrace to the human race that it employs the same word 'is' for these entirely different ideas.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: Does the second one express identity? It sounds more like membership to me. 'Socrates is the guy with the hemlock' is more like identity.
2. Reason / A. Nature of Reason / 5. Objectivity
There are no ultimate standards of rationality, since we only assess others by our own standard [Davidson]
     Full Idea: It makes no sense to speak of comparing or agreeing on ultimate standards of rationality, since it is our own standards in each case to which we must turn in interpreting others. This is not a failure of objectivity, but where 'questions come to an end'.
     From: Donald Davidson (Davidson on himself [1994], p.232)
     A reaction: This seems wrong, given the commitment to truth and charity in interpretation. He could have said the same about perception, but I doubt if he would.
Truth and objectivity depend on a community of speakers to interpret what they mean [Davidson]
     Full Idea: The basis on which the concepts of truth and objectivity depend for application is a community of understanding, agreement among speakers on how each is to be understood.
     From: Donald Davidson (Davidson on himself [1994], p.233)
     A reaction: Obviously all understanding is, in practice, an interpretation by a community, but that isn't what 'truth' means. We mean 'true independently of any community'.
2. Reason / D. Definition / 3. Types of Definition
A definition by 'extension' enumerates items, and one by 'intension' gives a defining property [Russell]
     Full Idea: The definition of a class or collection which enumerates is called a definition by 'extension', and one which mentions a defining property is called a definition by 'intension'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: In ordinary usage we take intensional definitions for granted, so it is interesting to realise that you might define 'tiger' by just enumerating all the tigers. But all past tigers? All future tigers? All possible tigers which never exist?
2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
The sentence 'procrastination drinks quadruplicity' is meaningless, rather than false [Russell, by Orenstein]
     Full Idea: Russell proposed (in his theory of types) that sentences like 'The number two is fond of cream cheese' or 'Procrastination drinks quadruplicity' should be regarded as not false but meaningless.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: This seems to be the origin of the notion of a 'category mistake', which Ryle made famous. The problem is always poetry, where abstractions can be reified, or personified, and meaning can be squeezed out of almost anything.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
An argument 'satisfies' a function φx if φa is true [Russell]
     Full Idea: We say that an argument a 'satisfies' a function φx if φa is true.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: We end up with Tarski defining truth in terms of satisfaction, so we shouldn't get too excited about what he achieved (any more than he got excited).
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
     Full Idea: Some moods of the syllogism are fallacious, e.g. 'Darapti': 'All M is S, all M is P, therefore some S is P', which fails if there is no M.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: This critique rests on the fact that the existential quantifier entails some existence, but the universal quantifier does not.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
     Full Idea: We know a great deal about a class without enumerating its members …so definition by extension is not necessary to knowledge about a class ..but enumeration of infinite classes is impossible for finite beings, so definition must be by intension.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Presumably mathematical induction (which keeps apply the rule to extend the class) will count as an intension here.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
     Full Idea: There is only one class having a given set of members, whereas there are always many different characteristics by which a given class may be defined.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
     Full Idea: There is no logical reason against infinite collections, and we are therefore justified, in logic, in investigating the hypothesis that there are such collections.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VIII)
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
     Full Idea: The Axiom of Infinity may be enunciated as 'If n be any inductive cardinal number, there is at least one class of individuals having n terms'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIII)
     A reaction: So for every possible there exists a set of terms for it. Notice that they are 'terms', not 'objects'. We must decide whether we are allowed terms which don't refer to real objects.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
     Full Idea: We have a class of representatives, who make up our Parliament, one being selected out of each constituency.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: You can rely on Russell for the clearest illustrations of these abstract ideas. He calls the Axiom of Choice the 'Multiplicative' Axiom.
Choice is equivalent to the proposition that every class is well-ordered [Russell]
     Full Idea: Zermelo has shown that [the Axiom of Choice] is equivalent to the proposition that every class is well-ordered, i.e. can be arranged in a series in which every sub-class has a first term (except, of course, the null class).
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: Russell calls Choice the 'Multiplicative' Axiom.
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
     Full Idea: The [Axiom of Choice] is also equivalent to the assumption that of any two cardinals which are not equal, one must be the greater.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: It is illuminating for the uninitiated to learn that this result can't be taken for granted (with infinite cardinals).
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
     Full Idea: Among boots we distinguish left and right, so we can choose all the right or left boots; with socks no such principle suggests itself, and we cannot be sure, without the [Axiom of Choice], that there is a class consisting of one sock from each pair.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: A deservedly famous illustration of a rather tricky part of set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: a family of functions is equivalent to a single type of function [Russell]
     Full Idea: The Axiom of Reducibility says 'There is a type of a-functions such that, given any a-function, it is formally equivalent to some function of the type in question'. ..It involves all that is really essential in the theory of classes. But is it true?
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: I take this to say that in the theory of types, it is possible to reduce each level of type down to one type.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Propositions about classes can be reduced to propositions about their defining functions [Russell]
     Full Idea: It is right (in its main lines) to say that there is a reduction of propositions nominally about classes to propositions about their defining functions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: The defining functions will involve the theory of types, in order to avoid the paradoxes of naïve set theory. This is Russell's strategy for rejecting the existence of sets.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
     Full Idea: Russell's solution (in the theory of types) consists of restricting the principle that every predicate has a set as its extension so that only meaningful predicates have sets as their extensions.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: There might be a chicken-and-egg problem here. How do you decide the members of a set (apart from ostensively) without deciding the predicate(s) that combine them?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
     Full Idea: The symbols for classes are mere conveniences, not representing objects called 'classes'. Classes are in fact logical fictions; they cannot be regarded as part of the ultimate furniture of the world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Ch.18), quoted by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: I agree. For 'logical fictions' read 'abstractions'. To equate abstractions with fictions is to underline the fact that they are a human creation. They are either that or platonic objects - there is no middle way.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
All the propositions of logic are completely general [Russell]
     Full Idea: It is part of the definition of logic that all its propositions are completely general.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
In modern times, logic has become mathematical, and mathematics has become logical [Russell]
     Full Idea: Logic has become more mathematical, and mathematics has become more logical. The consequence is that it has now become wholly impossible to draw a line between the two; in fact, the two are one.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This appears to be true even if you reject logicism about mathematics. Logicism is sometimes rejected because it always ends up with a sneaky ontological commitment, but maybe mathematics shares exactly the same commitment.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Logic is concerned with the real world just as truly as zoology [Russell]
     Full Idea: Logic is concerned with the real world just as truly as zoology, though with its more abstract and general features.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: I love this idea and am very sympathetic to it. The rival view seems to be that logic is purely conventional, perhaps defined by truth tables etc. It is hard to see how a connective like 'tonk' could be self-evidently silly if it wasn't 'unnatural'.
Logic can only assert hypothetical existence [Russell]
     Full Idea: No proposition of logic can assert 'existence' except under a hypothesis.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: I am prepared to accept this view fairly dogmatically, though Musgrave shows some of the difficulties of the if-thenist view (depending on which 'order' of logic is being used).
Logic can be known a priori, without study of the actual world [Russell]
     Full Idea: Logical propositions are such as can be known a priori, without study of the actual world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This remark constrasts strikingly with Idea 12444, which connects logic to the actual world. Is it therefore a priori synthetic?
5. Theory of Logic / F. Referring in Logic / 1. Naming / b. Names as descriptive
Russell admitted that even names could also be used as descriptions [Russell, by Bach]
     Full Idea: Russell clearly anticipated Donnellan when he said proper names can also be used as descriptions, adding that 'there is nothing in the phraseology to show whether they are being used in this way or as names'.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.175) by Kent Bach - What Does It Take to Refer? 22.2 L1
     A reaction: This seems also to anticipate Strawson's flexible and pragmatic approach to these things, which I am beginning to think is correct.
Names are really descriptions, except for a few words like 'this' and 'that' [Russell]
     Full Idea: We can even say that, in all such knowledge as can be expressed in words, with the exception of 'this' and 'that' and a few other words of which the meaning varies on different occasions - no names occur, but what seem like names are really descriptions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: I like the caveat about what is expressed in words. Russell is very good at keeping non-verbal thought in the picture. This is his famous final reduction of names to simple demonstratives.
Asking 'Did Homer exist?' is employing an abbreviated description [Russell]
     Full Idea: When we ask whether Homer existed, we are using the word 'Homer' as an abbreviated description.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: It is hard to disagree with Russell over this rather unusual example. It doesn't seem so plausible when Ottiline refers to 'Bertie'.
5. Theory of Logic / F. Referring in Logic / 1. Naming / f. Names eliminated
The only genuine proper names are 'this' and 'that' [Russell]
     Full Idea: In all knowledge that can be expressed in words - with the exception of "this" and "that", and a few other such words - no genuine proper names occur, but what seem like genuine proper names are really descriptions
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
     A reaction: This is the terminus of Russell's train of thought about descriptions. Suppose you point to something non-existent, like a ghost in a misty churchyard? You'd be back to the original problem of naming a non-existent!
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
'I met a unicorn' is meaningful, and so is 'unicorn', but 'a unicorn' is not [Russell]
     Full Idea: In 'I met a unicorn' the four words together make a significant proposition, and the word 'unicorn' is significant, …but the two words 'a unicorn' do not form a group having a meaning of its own. It is an indefinite description describing nothing.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVI)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 2. Geometry
If straight lines were like ratios they might intersect at a 'gap', and have no point in common [Russell]
     Full Idea: We wish to say that when two straight lines cross each other they have a point in common, but if the series of points on a line were similar to the series of ratios, the two lines might cross in a 'gap' and have no point in common.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], X)
     A reaction: You can make a Dedekind Cut in the line of ratios (the rationals), so there must be gaps. I love this idea. We take for granted intersection at a point, but physical lines may not coincide. That abstract lines might fail also is lovely!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
New numbers solve problems: negatives for subtraction, fractions for division, complex for equations [Russell]
     Full Idea: Every generalisation of number has presented itself as needed for some simple problem. Negative numbers are needed to make subtraction always possible; fractions to make division always possible; complex numbers to make solutions of equations possible.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
     A reaction: Doesn't this rather suggest that we made them up? If new problems turn up, we'll invent another lot. We already have added 'surreal' numbers.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
Could a number just be something which occurs in a progression? [Russell, by Hart,WD]
     Full Idea: Russell toyed with the idea that there is nothing to being a natural number beyond occurring in a progression
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919], p.8) by William D. Hart - The Evolution of Logic 5
     A reaction: How could you define a progression, without a prior access to numbers? - Arrange all the objects in the universe in ascending order of mass. Use scales to make the selection. Hence a finite progression, with no numbers!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A series can be 'Cut' in two, where the lower class has no maximum, the upper no minimum [Russell]
     Full Idea: There is no maximum to the ratios whose square is less than 2, and no minimum to those whose square is greater than 2. This division of a series into two classes is called a 'Dedekind Cut'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
A complex number is simply an ordered couple of real numbers [Russell]
     Full Idea: A complex number may be regarded and defined as simply an ordered couple of real numbers
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VII)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
Discovering that 1 is a number was difficult [Russell]
     Full Idea: The discovery that 1 is a number must have been difficult.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Interesting that he calls it a 'discovery'. I am tempted to call it a 'decision'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Numbers are needed for counting, so they need a meaning, and not just formal properties [Russell]
     Full Idea: We want our numbers to be such as can be used for counting common objects, and this requires that our numbers should have a definite meaning, not merely that they should have certain formal properties.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
     A reaction: Why would just having certain formal properties be insufficient for counting? You just need an ordered series of unique items. It isn't just that we 'want' this. If you define something that we can't count with, you haven't defined numbers.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The formal laws of arithmetic are the Commutative, the Associative and the Distributive [Russell]
     Full Idea: The usual formal laws of arithmetic are the Commutative Law [a+b=b+a and axb=bxa], the Associative Law [(a+b)+c=a+(b+c) and (axb)xc=ax(bxc)], and the Distributive Law [a(b+c)=ab+ac)].
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IX)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
Infinity and continuity used to be philosophy, but are now mathematics [Russell]
     Full Idea: The nature of infinity and continuity belonged in former days to philosophy, but belongs now to mathematics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Pref)
     A reaction: It is hard to disagree, since mathematicians since Cantor have revealed so much about infinite numbers (through set theory), but I think it remains an open question whether philosophers have anything distinctive to contribute.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
     Full Idea: Order must be defined by means of a transitive relation, since only such a relation is able to leap over an infinite number of intermediate terms. ...Without it we would not be able to define the order of magnitude among fractions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IV)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
     Full Idea: That '0', 'number' and 'successor' cannot be defined by means of Peano's five axioms, but must be independently understood.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
     Full Idea: Given any series which is endless, contains no repetitions, has a beginning, and has no terms that cannot be reached from the beginning in a finite number of steps, we have a set of terms verifying Peano's axioms.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
     Full Idea: The number 3 is something which all trios have in common, and which distinguishes them from other collections. A number is something that characterises certain collections, namely, those that have that number.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: This is a verbal summary of the Fregean view of numbers, which marks the arrival of set theory as the way arithmetic will in future be characterised. The question is whether set theory captures all aspects of numbers. Does it give a tool for counting?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
     Full Idea: What matters in mathematics is not the intrinsic nature of our terms, but the logical nature of their interrelations.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: If they have an instrinsic nature, that would matter far more, because that would dictate the interrelations. Structuralism seems to require that they don't actually have any intrinsic nature.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
     Full Idea: 'Ten men' is grammatically the same form as 'white men', so that 10 might be thought to be an adjective qualifying 'men'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: The immediate problem, as Frege spotted, is that such expressions can be rephrased to remove the adjective (by saying 'the number of men is ten').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
     Full Idea: Russell's own stand was that numbers are really only sets of equivalent sets.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Paul Benacerraf - Logicism, Some Considerations (PhD) p.168
     A reaction: Benacerraf is launching a nice attack on this view, based on our inability to grasp huge numbers on this basis, or to see their natural order.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
     Full Idea: There is always unavoidably something psychological about inference.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Glad to find Russell saying that. Only pure Fregeans dream of a logic that rises totally above the minds that think it. See Robert Hanna on the subject.
7. Existence / A. Nature of Existence / 1. Nature of Existence
Existence can only be asserted of something described, not of something named [Russell]
     Full Idea: Existence can only be asserted of something described, not of something named.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: This is the motivation behind Russell's theory of definite descriptions, and epitomises the approach to ontology through language. Sounds wrong to me!
7. Existence / D. Theories of Reality / 7. Fictionalism
Classes are logical fictions, made from defining characteristics [Russell]
     Full Idea: Classes may be regarded as logical fictions, manufactured out of defining characteristics.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II n1)
     A reaction: I agree with this. The idea that in addition to the members there is a further object, the set containing them, is absurd. Sets are a tool for thinking about the world.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
If a relation is symmetrical and transitive, it has to be reflexive [Russell]
     Full Idea: It is obvious that a relation which is symmetrical and transitive must be reflexive throughout its domain.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Compare Idea 13543! The relation will return to its originator via its neighbours, rather than being directly reflexive?
'Asymmetry' is incompatible with its converse; a is husband of b, so b can't be husband of a [Russell]
     Full Idea: The relation of 'asymmetry' is incompatible with the converse. …The relation 'husband' is asymmetrical, so that if a is the husband of b, b cannot be the husband of a.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], V)
     A reaction: This is to be contrasted with 'non-symmetrical', where there just happens to be no symmetry.
9. Objects / D. Essence of Objects / 3. Individual Essences
The essence of individuality is beyond description, and hence irrelevant to science [Russell]
     Full Idea: The essence of individuality always eludes words and baffles description, and is for that very reason irrelevant to science.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: [context needed for a full grasp of this idea] Russell seems to refer to essence as much as to individuality. The modern essentialist view is that essences are not beyond description after all. Fundamental physics is clearer now than in 1919.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
Inferring q from p only needs p to be true, and 'not-p or q' to be true [Russell]
     Full Idea: In order that it be valid to infer q from p, it is only necessary that p should be true and that the proposition 'not-p or q' should be true.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Rumfitt points out that this approach to logical consequences is a denial of any modal aspect, such as 'logical necessity'. Russell observes that for a good inference you must know the disjunction as a whole. Could disjunction be modal?...
All forms of implication are expressible as truth-functions [Russell]
     Full Idea: There is no need to admit as a fundamental notion any form of implication not expressible as a truth-function.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Note that this is from a book about 'mathematical' philosophy. Nevertheless, it seems to have the form of a universal credo for Russell. He wasn't talking about conditionals here. Maybe conditionals are not implications (in isolation, that is).
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
If something is true in all possible worlds then it is logically necessary [Russell]
     Full Idea: Saying that the axiom of reducibility is logically necessary is what would be meant by saying that it is true in all possible worlds.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: This striking remark is a nice bridge between Leibniz (about whom Russell wrote a book) and Kripke.
14. Science / B. Scientific Theories / 1. Scientific Theory
Mathematically expressed propositions are true of the world, but how to interpret them? [Russell]
     Full Idea: We know that certain scientific propositions - often expressed in mathematical symbols - are more or less true of the world, but we are very much at sea as to the interpretation to be put upon the terms which occur in these propositions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: Enter essentialism, say I! Russell's remark is pretty understandable in 1919, but I don't think the situation has changed much. The problem of interpretation may be of more interest to philosophers than to physicists.
15. Nature of Minds / A. Nature of Mind / 1. Mind / a. Mind
There are no such things as minds, but people have mental properties [Davidson]
     Full Idea: There are no such things as minds, but people have mental properties.
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: I think this is right. It fits with Searle's notion of consciousness as a property, like the liquidity of water. I don't panic if I think "I have no mind, but I have extraordinary properties".
17. Mind and Body / D. Property Dualism / 1. Reductionism critique
If the mind is an anomaly, this makes reduction of the mental to the physical impossible [Davidson]
     Full Idea: If there are no strict psychophysical laws, this rules out reductionism, either by definition of mental predicates in physical terms, or by way of bridging laws.
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: But it is by no means clear that there are no psycho-physical laws. How could this be known a priori?
17. Mind and Body / D. Property Dualism / 2. Anomalous Monism
There are no strict psychophysical laws connecting mental and physical events [Davidson]
     Full Idea: There are no strict psychophysical laws (that is, laws connecting mental events under their mental descriptions with physical events under their physical descriptions).
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: This is clearly open to question. It may be just that no human mind could ever grasp such laws, given their probable complexity.
Obviously all mental events are causally related to physical events [Davidson]
     Full Idea: All mental events are causally related to physical events. ..This seems obvious.
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: All mental events are physically caused. Some bodily physical events result from mental events. Probably all mental events have some effect of other mental events (all of which are in some sense physical).
Mental entities do not add to the physical furniture of the world [Davidson]
     Full Idea: Mental entities do not add to the physical furniture of the world.
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: This seems to me clearly true, however we propose to characterise mental events.
17. Mind and Body / D. Property Dualism / 3. Property Dualism
The correct conclusion is ontological monism combined with conceptual dualism [Davidson]
     Full Idea: My basic premises lead to the conclusion of ontological monism coupled with conceptual dualism (like Spinoza, except that he denied mental causation).
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: 'Conceptual dualism' implies no real difference, but 'property dualism' is better, suggesting different properties when viewed from different angles.
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
Absence of all rationality would be absence of thought [Davidson]
     Full Idea: To imagine a totally irrational animal is to imagine an animal without thought.
     From: Donald Davidson (Davidson on himself [1994], p.232)
     A reaction: This wouldn't be so clear without the theory of evolution, which suggests that only the finders of truth last long enough to breed.
18. Thought / C. Content / 6. Broad Content
Our meanings are partly fixed by events of which we may be ignorant [Davidson]
     Full Idea: What we mean by what we say is partly fixed by events of which we may be ignorant.
     From: Donald Davidson (Davidson on himself [1994], p.235)
     A reaction: There is 'strict and literal meaning', which is fixed by the words, even if I don't know what I am saying. But 'speaker's meaning' is surely a pure matter of a state of mind?
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
19. Language / D. Propositions / 1. Propositions
Propositions are mainly verbal expressions of true or false, and perhaps also symbolic thoughts [Russell]
     Full Idea: We mean by 'proposition' primarily a form of words which expresses what is either true or false. I say 'primarily' because I do not wish to exclude other than verbal symbols, or even mere thoughts if they have a symbolic character.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: I like the last bit, as I think of propositions as pre-verbal thoughts, and I am sympathetic to Fodor's 'language of thought' thesis, that there is a system of representations within the brain.
19. Language / D. Propositions / 6. Propositions Critique
Propositions explain nothing without an explanation of how sentences manage to name them [Davidson]
     Full Idea: The idea of a proposition is unhelpful, until it is explained how exactly the words in the contained sentence manage to name or describe a proposition (which even Frege failed to achieve).
     From: Donald Davidson (Davidson on himself [1994], p.232)
     A reaction: It seems obvious to me that there are brain events best labelled as propositions, even if their fit with language is puzzling.
19. Language / F. Communication / 4. Private Language
Thought is only fully developed if we communicate with others [Davidson]
     Full Idea: We would have no fully-fledge thoughts if we were not in communication with others.
     From: Donald Davidson (Davidson on himself [1994], p.233)
     A reaction: This seems a plausible empirical observation, though I would doubt any a priori proof of it. If animals could speak, they would become intellectuals?
19. Language / F. Communication / 6. Interpreting Language / c. Principle of charity
There is simply no alternative to the 'principle of charity' in interpreting what others do [Davidson]
     Full Idea: The 'principle of charity' is a misleading term, since there is no alternative if we want to make sense of the attitudes and actions of the agents around us.
     From: Donald Davidson (Davidson on himself [1994], p.233)
     A reaction: I suppose so, but only with a background of evolutionary theory. I would necessarily assume charity if a robot spoke to me.
25. Social Practice / E. Policies / 5. Education / c. Teaching
Without a teacher, the concept of 'getting things right or wrong' is meaningless [Davidson]
     Full Idea: Without a 'teacher', nothing would give content to the idea that there is a difference between getting things right and getting them wrong.
     From: Donald Davidson (Davidson on himself [1994], p.234)
     A reaction: Seems right. A group of speculators with no one in the role of 'teacher' would seem to be paralysed with uncertain (except where judgements are very obvious).
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Cause and effect relations between events must follow strict laws [Davidson]
     Full Idea: If two events are related as cause and effect, there is a strict law under which they may be subsumed.
     From: Donald Davidson (Davidson on himself [1994], p.231)
     A reaction: Davidson admits that this is open to challenge (though Hume and Kant supported it). It does seem to be central to our understanding of nature.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.