Combining Texts

All the ideas for 'works', 'Authority and the Individual' and 'Frege'

unexpand these ideas     |    start again     |     specify just one area for these texts


61 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Aristotelian logic dealt with inferences about concepts, and there were also proposition inferences [Weiner]
     Full Idea: Till the nineteenth century, it was a common view that Aristotelian logic could evaluate inferences whose validity was based on relations between concepts, while propositional logic could evaluate inferences based on relations between propositions.
     From: Joan Weiner (Frege [1999], Ch.3)
     A reaction: Venn diagrams relate closely to Aristotelian syllogisms, as each concept is represented by a circle, and shows relations between sets. Arrows seem needed to represent how to go from one proposition to another. Is one static, the other dynamic?
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / e. Human nature
We divide mankind into friend and foe, and cooperate with one and compete with the other [Russell]
     Full Idea: Instinctively we divide mankind into friends and foes - friends, towards whom we have a morality of co-operation; foes, towards whom we have that of competition.
     From: Bertrand Russell (Authority and the Individual [1949], 1)
     A reaction: Interesting, because I have though of cooperation and competition as intrinsic features of people, internal to their nature, but this idea observes that it is more external, as two responses to two sharply distinct aspects of experience.
24. Political Theory / A. Basis of a State / 1. A People / c. A unified people
Gradually loyalty to a creed increased, which could even outweigh nationality [Russell]
     Full Idea: At a later stage in the development of civilization, a new kind of loyalty began to be developed, based on identity of creed. …Its military strength was displayed in Islam …and later loyalities of Catholics or Protestants could outweigh nationality.
     From: Bertrand Russell (Authority and the Individual [1949], 1)
     A reaction: [compressed] The only examples of creed loyalty that come to mind are religious. With increased migration in the modern world the phenomenon of divided loyalties has grown. Can a political theory cope with divided loyalties?
Increasingly war expands communities, and unifies them through fear [Russell]
     Full Idea: From early days down to modern times war has been the chief engine in enlarging the size of communities, and fear has increasingly replaced tribal solidarity as a source of social cohesion.
     From: Bertrand Russell (Authority and the Individual [1949], 1)
     A reaction: It is a feature of modern nationalism to try to generate fear of various outsiders, even in times of peace. Most of us despise such things, but the underlying desire for greater national unity is not unworthy. What enemies would a world state have?
In early societies the leaders needed cohesion, but the rest just had to obey [Russell]
     Full Idea: In historical societies such as ancient Egypt only a minority at the top of the social scale - the king, the aristocracy and the priests - needed any psychological mechanism towards social cohesion; all the rest merely obeyed.
     From: Bertrand Russell (Authority and the Individual [1949], 2)
     A reaction: This is why even now I take obedience to be a key right-wing virtue, though it is usually reinforced through national myths and distorted proganda. Quasi-worship of the leader also seems to be a major ingredient. Obedience unifies armies.
24. Political Theory / A. Basis of a State / 2. Population / b. State population
The economic and political advantages of great size seem to have no upper limit [Russell]
     Full Idea: Short of the whole planet there is no visible limit to the advantages of size, both in economic and in political organisation.
     From: Bertrand Russell (Authority and the Individual [1949], 2)
     A reaction: Obviously there are also disadvantages, such as the vast distances, and the alienation of people far from the centre. I take economies of scale to be one of the advantages of socialist nationalisations.
24. Political Theory / B. Nature of a State / 1. Purpose of a State
Government has a negative purpose, to prevent trouble, and a positive aim of realising our desires [Russell]
     Full Idea: Government has a negative function, to prevent private violence, to protect life and property, to enact criminal law and secure its enforcement. It also has a positive purpose, to facilitate the realisation of desires common to most of the citizens.
     From: Bertrand Russell (Authority and the Individual [1949], 2)
     A reaction: [compressed] Interesting because the second purpose is rarely cited. Governments improve communications, facilitate trade, and encourage health and education services, which we all want.
24. Political Theory / C. Ruling a State / 2. Leaders / b. Monarchy
A monarch is known to everyone in the group, and can thus unite large groups [Russell]
     Full Idea: At a very early stage loyalty to a group must have been reinforced by loyalty to a leader. In a large tribe the king or chief may be known the everybody even when individuals are strangers. This makes possible increase in the size of the group.
     From: Bertrand Russell (Authority and the Individual [1949], 1)
     A reaction: In this way humanity could move from hunter-gatherer groups to tribes or clans. In the UK even people who couldn't name the current Prime Minister are all fully aware of the monarch. In this way a merely constitutional monarch makes sense,
24. Political Theory / C. Ruling a State / 4. Changing the State / b. Devolution
Power should be with smaller bodies, as long as it doesn't restrict central powers [Russell]
     Full Idea: The general principle of delimiting powers should be to leave to smaller bodies all functions which do not prevent larger bodies from fulfilling their purpose.
     From: Bertrand Russell (Authority and the Individual [1949], 5)
     A reaction: In recent years in the UK smaller local bodies have been severely reduced in power by central government. This is nominally in favour of individuals, but in practice seems to have strengthened the centre. Russell was keen on devolving powers.
24. Political Theory / D. Ideologies / 2. Anarchism
In an anarchy universities, research, books, and even seaside holidays, would be impossible [Russell]
     Full Idea: It is obvious that in a state of anarchy there could not be universities or scientific research or publication of books, or even such simple things as seaside holidays.
     From: Bertrand Russell (Authority and the Individual [1949], 5)
     A reaction: A seaside holiday seems possible, though it obviously needs means of publicity, and of transport. Why is a private university impossible? The general thought seems to be that anything very complex would be impossible. Maybe.
A state is essential, to control greedy or predatory impulses [Russell]
     Full Idea: The control of greedy or predatory impulses is imperatively necessary, and therefore States …are needed for survival.
     From: Bertrand Russell (Authority and the Individual [1949], 5)
     A reaction: The anarchist replies that the corruption of this benevolent state is precisely the problem they are trying to avoid. Perhaps the emphasis should be on the rule of law, rather than on people holding centralised power.
24. Political Theory / D. Ideologies / 5. Democracy / f. Against democracy
In democracy we are more aware of being governed than of our tiny share in government [Russell]
     Full Idea: In a democracy you have a 20 millionth share in the government of others, but only a 20 millionth share in the government of yourself. You are therefore much more conscious of being governed than of governing.
     From: Bertrand Russell (Authority and the Individual [1949], 5)
     A reaction: Nice. Add to that the fact that your share in governing others only occurs at election time. In between we are powerless spectators, but we are still governed.
24. Political Theory / D. Ideologies / 8. Socialism
Managers are just as remote from workers under nationalisation as under capitalism [Russell]
     Full Idea: Nationalisation leaves managers and officials almost as remote from the workers as they are under a capitalist regime.
     From: Bertrand Russell (Authority and the Individual [1949], 4)
     A reaction: Russell's solution is workplace democracy. Presumably that could be imposed on a nationalised industry much more easily than on a profit-driven private capitalist industry.
Socialists say economic justice needs some state control of industries, and of foreign trade [Russell]
     Full Idea: Economic justice is held by Socialists (rightly, in my opinion) to involve state ownership of key industries and considerable regulation of foreign trade.
     From: Bertrand Russell (Authority and the Individual [1949], 5)
     A reaction: This must be to obtain greater control over the profits of industry, and also to prevent trade become too exploitative of weaker foreign nations. Britain had a socialist government when this book was written.
Being a slave of society is hardly better than being a slave of a despot [Russell]
     Full Idea: A society in which each is the slave of all is only a little better than one in which each is the slave of a despot.
     From: Bertrand Russell (Authority and the Individual [1949], 4)
     A reaction: This seems to apply quite accurately to the position of those state employees who have the lowest status and wages. Society as a whole exploits them, so it is hard to point the finger at their oppressors.
25. Social Practice / A. Freedoms / 1. Slavery
Slavery began the divorce between the work and the purposes of the worker [Russell]
     Full Idea: The introduction of slavery began the divorce between the purpose of the work and the purposes of the worker.
     From: Bertrand Russell (Authority and the Individual [1949], 4)
     A reaction: Worth saying, because marxists tend to blame more recent capitalism for creating this problem (of 'alienation'). There are many degrees of slavery.
25. Social Practice / B. Equalities / 1. Grounds of equality
Slaves can be just as equal as free people [Russell]
     Full Idea: There is equality where all are slaves, as well as where all are free.
     From: Bertrand Russell (Authority and the Individual [1949], 4)
     A reaction: A nice observation, though a person is only a slave if someone controls them, so it is not strictly true.
25. Social Practice / B. Equalities / 4. Economic equality
Scarce goods may be denied entirely, to avoid their unequal distribution [Russell]
     Full Idea: There is a risk that, in the pursuit of equality, good things which there is difficulty in distributing evenly may not be admitted to be good.
     From: Bertrand Russell (Authority and the Individual [1949], 4)
     A reaction: Lovely sentence. The clarity and economy with which he expresses an intricate idea. Why can't you philosophers all write like that? This is not just the unequal distribution of scarce goods, but a subtler problem. The finest wines, for example.
25. Social Practice / D. Justice / 1. Basis of justice
Modern justice is seen as equality, apart from modest extra rewards for exceptional desert [Russell]
     Full Idea: Justice has come to be interpreted as equality, except where exceptional merit is thought to deserve an exceptional but still moderate reward.
     From: Bertrand Russell (Authority and the Individual [1949], 5)
     A reaction: Kekes rebels against this modern distortion of justice, which traditionally means everyone getting what they deserve - good or bad. The modern egalitarian view seems to be a rebellion against the harsh interpretation of the older view.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.