Combining Texts

All the ideas for 'works', 'Causal Explanation' and 'Are there propositions?'

unexpand these ideas     |    start again     |     specify just one area for these texts


67 ideas

3. Truth / A. Truth Problems / 6. Verisimilitude
Verisimilitude has proved hard to analyse, and seems to have several components [Lewis]
     Full Idea: The analysis of verisimilitude has been much debated. Some plausible analyses have failed disastrously, others conflict with one another. One conclusion is that verisimilitude seems to consist of several distinguishable virtues.
     From: David Lewis (Causal Explanation [1986], V n7)
     A reaction: Presumably if it is complex, you can approach truth in one respect while receding from it in another. It seems clear enough if you are calculating pi by some iterative process.
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
A true proposition seems true of one fact, but a false proposition seems true of nothing at all. [Ryle]
     Full Idea: Whereas there might be just one fact that a true proposition was like, we would have to say that a false proposition was unlike any fact. We could not speak of the fact that it was false of, so we could not speak of its being false of anything at all.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: Ryle brings out very nicely the point Russell emphasised so much, that the most illuminating studies in philosophy are of how falsehood works, rather than of how truths work. If I say 'the Queen is really a man' it is obvious what that is false of.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Two maps might correspond to one another, but they are only 'true' of the country they show [Ryle]
     Full Idea: One map of Sussex is like another, but it is not true of that other map, but only of the county.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: One might question whether a map is in any sense 'true' of Sussex, though one must admit that there are good and bad maps of Sussex. The point is a nice one, which shows that there is no simple account of truth as correspondence.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic studies consequence, compatibility, contradiction, corroboration, necessitation, grounding.... [Ryle]
     Full Idea: Logic studies the way in which one thing follows from another, in which one thing is compatible with another, contradicts, corroborates or necessitates another, is a special case of another or the nerve of another. And so on.
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: I presume that 'and so on' would include how one thing proves another. This is quite a nice list, which makes me think a little more widely about the nature of logic (rather than just about inference). Incompatibility isn't a process.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / D. Theories of Reality / 8. Facts / c. Facts and truths
Many sentences do not state facts, but there are no facts which could not be stated [Ryle]
     Full Idea: There are many sentences which do not state facts, while there are no facts which (in principle) could not be stated.
     From: Gilbert Ryle (Are there propositions? [1930], 'Substitute')
     A reaction: Hm. This seems like a nice challenge. The first problem would be infinite facts. Then complex universal facts, beyond the cognizance of any mind. Then facts that change faster than thinking can change. Do you give up yet? Then there's....
8. Modes of Existence / C. Powers and Dispositions / 3. Powers as Derived
A disposition needs a causal basis, a property in a certain causal role. Could the disposition be the property? [Lewis]
     Full Idea: I take for granted that a disposition requires a causal basis: one has the disposition iff one has a property that occupies a certain causal role. Shall we then identify the disposition with its basis? That makes the disposition cause its manifestations.
     From: David Lewis (Causal Explanation [1986], III)
     A reaction: Introduce the concept of a 'power' and I see no problem with his proposal. Fundamental dispositions are powerful, and provide the causal basis for complex dispositions. Something had better be powerful.
10. Modality / B. Possibility / 7. Chance
We can explain a chance event, but can never show why some other outcome did not occur [Lewis]
     Full Idea: I think we are right to explain chance events, yet we are right also to deny that we can ever explain why a chance process yields one outcome rather than another. We cannot explain why one event happened rather than the other.
     From: David Lewis (Causal Explanation [1986], VI)
     A reaction: This misses out an investigation which slowly reveals that a 'chance' event wasn't so chancey after all. Failure to explain confirms chance, so the judgement of chance shouldn't block attempts to explain.
12. Knowledge Sources / B. Perception / 3. Representation
Representation assumes you know the ideas, and the reality, and the relation between the two [Ryle]
     Full Idea: The theory of Representative Ideas begs the whole question, by assuming a) that we can know these 'Ideas', b) that we can know the realities they represent, and c) we can know a particular 'idea' to be representative of a particular reality.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: Personally I regard the ideas as immediate (rather than acquired by some knowledge process), and I am dimly hoping that they represent reality (or I'm in deep trouble), and I am struggling to piece together the reality they represent. I'm happy with that.
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
Does a good explanation produce understanding? That claim is just empty [Lewis]
     Full Idea: It is said that a good explanation ought to produce understanding, ...but this just says that a good explanation produces possession of that which it provide, so this desideratum is empty. It adds nothing to our understanding of explanation.
     From: David Lewis (Causal Explanation [1986], V)
     A reaction: I am not convinced by this dismissal. If you are looking for a test of whether an explanation is good, the announcement that the participants feel they have achieved a good understanding sounds like success.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Science may well pursue generalised explanation, rather than laws [Lewis]
     Full Idea: The pursuit of general explanations may be very much more widespread in science than the pursuit of general laws.
     From: David Lewis (Causal Explanation [1986], IV)
     A reaction: Nice. I increasingly think that the main target of all enquiry is ever-widening generality, with no need to aspire to universality.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
A good explanation is supposed to show that the event had to happen [Lewis]
     Full Idea: It is said that a good explanation ought to show that the explanandum event had to happen, given the laws and circumstances.
     From: David Lewis (Causal Explanation [1986], V)
     A reaction: I cautiously go along with this view. Given that there are necessities in nature (a long story), we should aim to reveal them. There is no higher aspiration open to us than successful explanation. Lewis says good explanations can reveal falsehoods.
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Lewis endorses the thesis that all explanation of singular events is causal explanation [Lewis, by Psillos]
     Full Idea: Lewis endorses the thesis that all explanation of singular events is causal explanation.
     From: report of David Lewis (Causal Explanation [1986]) by Stathis Psillos - Causation and Explanation p.237
     A reaction: It is hard to challenge this. The assumption is that only nomological and causal explanations are possible, and the former are unobtainable for singular events.
To explain an event is to provide some information about its causal history [Lewis]
     Full Idea: Here is my main thesis: to explain an event is to provide some information about its causal history.
     From: David Lewis (Causal Explanation [1986], II)
     A reaction: The obvious thought is that you might provide some tiny and barely relevant part of that causal history, such as a bird perched on the Titanic's iceberg. So how do we distinguish the 'important' causal information?
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
If you like judgments and reject propositions, what are the relata of incoherence in a judgment? [Ryle]
     Full Idea: Those who find 'judgments' everywhere and propositions nowhere find that some judgments cohere whereas others are incoherent. What is the status of the terms between which these relations hold?
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: Ryle is playing devil's advocate, but this strikes me as a nice point. I presume Russell after 1906 is the sort of thinker he has in mind.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
19. Language / A. Nature of Meaning / 1. Meaning
Husserl and Meinong wanted objective Meanings and Propositions, as subject-matter for Logic [Ryle]
     Full Idea: It is argued by Husserl and (virtually) by Meinong that only if there are such entities as objective Meanings - and propositions are just a species of Meaning - is there anything for Logic to be about.
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: It is presumably this proposal which led to the scepticism about meanings in Wittgenstein, Quine and Kripke. The modern view, which strikes me as right, is that logic is about inference, and so doesn't need a subject-matter.
19. Language / A. Nature of Meaning / 3. Meaning as Speaker's Intention
When I utter a sentence, listeners grasp both my meaning and my state of mind [Ryle]
     Full Idea: If I have uttered my sentence aloud, a listener can both understand what I say or grasp my meaning, and also infer to my state of mind.
     From: Gilbert Ryle (Are there propositions? [1930], I)
     A reaction: This simple observations seems rather important. If we shake written words onto the floor, they might add up to a proper sentence, but half of the point of a sentence is missing. Irony trades on the gap between meaning and state of mind.
19. Language / D. Propositions / 1. Propositions
'Propositions' name what is thought, because 'thoughts' and 'judgments' are too ambiguous [Ryle]
     Full Idea: As the orthodox terms 'thoughts' and 'judgments' are equivocal, since they may equally well denote 'thinkings' as 'what-is-thought', the 'accusatives' of acts of thinking have come to be called 'propositions'.
     From: Gilbert Ryle (Are there propositions? [1930], I)
     A reaction: I have understood propositions to be capable of truth or falsity. 'What is thought' could be a right old jumble of images and disjointed fragments. Propositions are famous for their unity!
19. Language / D. Propositions / 4. Mental Propositions
Several people can believe one thing, or make the same mistake, or share one delusion [Ryle]
     Full Idea: We ordinarily find no difficulty in saying of a given thing that several people believe it and so, if they think it false, 'make the same mistake' or 'labour under the same delusion'.
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: Ryle is playing devil's advocate, but this (like 13980) strikes me as quite good support for propositions. I suppose you can describe these phenomena as assent to sentences, but they might be very different sentences to express the same delusion.
We may think in French, but we don't know or believe in French [Ryle]
     Full Idea: Although we speak of thinking in French, we never talk of knowing or believing or opining in French.
     From: Gilbert Ryle (Are there propositions? [1930], 'Substitute')
     A reaction: Once again Ryle is playing devil's advocate, but he does it rather well, and offers good support for my belief in propositions. I love this. 'I know, in French, a bank where the wild thyme blows'.
19. Language / D. Propositions / 6. Propositions Critique
There are no propositions; they are just sentences, used for thinking, which link to facts in a certain way [Ryle]
     Full Idea: There are no substantial propositions...There is just a relation between grammatical structure and the logical structure of facts. 'Proposition' denotes the same as 'sentence' or 'statement'. A proposition is not what I think, but what I think or talk in.
     From: Gilbert Ryle (Are there propositions? [1930], 'Conclusions')
     A reaction: The conclusion of Ryle's discussion, but I found his support for propositions much more convincing than his critique of them, or his attempt at an alternative linguistic account. He never mentioned animals, so he self-evidently hasn't grasped the problem.
If we accept true propositions, it is hard to reject false ones, and even nonsensical ones [Ryle]
     Full Idea: All the arguments for the subsistence of true propositions seem to hold good for the subsistence of false ones. We might even have to find room for absurd or nonsensical ones like 'some round squares are not red-headed'.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: A particularly nice example of a Category Mistake from the man who made them famous. Why can't we just make belief a proposition attitude, so I equally believe 'sea is blue', 'grass is pink' and 'trees are bifocal', but the status of my belief varies?
26. Natural Theory / C. Causation / 2. Types of cause
Explaining match lighting in general is like explaining one lighting of a match [Lewis]
     Full Idea: Explaining why struck matches light in general is not so very different from explaining why some particular struck match lit. ...We may generalize modestly, without laying claim to universality.
     From: David Lewis (Causal Explanation [1986], IV)
     A reaction: A suggestive remark, since particular causation and general causation seem far apart, but Lewis suggests that the needs of explanation bring them together. Lawlike and unlawlike explanations?
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
Ways of carving causes may be natural, but never 'right' [Lewis]
     Full Idea: There is no one right way - though there may be more or less natural ways - of carving up a causal history.
     From: David Lewis (Causal Explanation [1986], I)
     A reaction: This invites a distinction between the 'natural' causes and the 'real' causes. Presumably if any causes were 'real', they would have a better claim to be 'right'. Is an earthquake the 'real' (correct?) cause of a tsunami?
We only pick 'the' cause for the purposes of some particular enquiry. [Lewis]
     Full Idea: Disagreement about 'the' cause is only disagreement about which part of the causal history is most salient for the purposes of some particular inquiry.
     From: David Lewis (Causal Explanation [1986], I)
     A reaction: I don't believe this. In the majority of cases I see the cause of an event, without having any interest in any particular enquiry. It is just so obvious that there isn't even a disagreement. Maybe there is only one sensible enquiry.
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
Causal dependence is counterfactual dependence between events [Lewis]
     Full Idea: I take causal dependence to be counterfactual dependence, of a suitably back-tracking sort, between distinct events.
     From: David Lewis (Causal Explanation [1986], I)
     A reaction: He quotes Hume in support. 'Counterfactual dependence' strikes me as too vague, or merely descriptive, for the job of explanation. 'If...then' is a logical relationship; what is it in nature that justifies the dependency?
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.