Combining Texts

All the ideas for 'works', 'works' and 'Prolegomena to Ethics'

unexpand these ideas     |    start again     |     specify just one area for these texts


65 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Hegel produced modern optimism; he failed to grasp that consciousness never progresses [Hegel, by Cioran]
     Full Idea: Hegel is chiefly responsible for modern optimism. How could he have failed to see that consciousness changes only its forms and modalities, but never progresses.
     From: report of Georg W.F.Hegel (works [1812]) by E.M. Cioran - A Short History of Decay 5
1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / d. Nineteenth century philosophy
Hegel was the last philosopher of the Book [Hegel, by Derrida]
     Full Idea: Hegel was the last philosopher of the Book.
     From: report of Georg W.F.Hegel (works [1812]) by Jacques Derrida - Positions p.64
     A reaction: Reference to 'the Book' connects this to the great religions which rely on one holy text. The implication is that Hegel was proposing one big solution to all problems. It is doubtful if many philosophers before Hegel dreamt of that either.
1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Hegel doesn't storm the heavens like the giants, but works his way up by syllogisms [Kierkegaard on Hegel]
     Full Idea: Hegel is a Johannes Climacus who does not storm the heavens, like the giants, by putting mountain upon mountain, but climbs aboard them by way of his syllogisms.
     From: comment on Georg W.F.Hegel (works [1812]) by Søren Kierkegaard - The Journals of Kierkegaard 2A
     A reaction: [Idea from SY] This appears to be an attempt at insulting Hegel for his timidity, but it seems to be describing the cautious approach which most modern philosophers take to be correct. [PG]
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
For Hegel, things are incomplete, and contain external references in their own nature [Hegel, by Russell]
     Full Idea: The basis of Hegel's system is that what is incomplete must not be self-subsistent, and needs the support of other things; whatever has relations to things outside itself must contain some reference to those outside things in its own nature.
     From: report of Georg W.F.Hegel (works [1812]) by Bertrand Russell - Problems of Philosophy Ch.14
     A reaction: This leads to the idealist doctrine of 'internal relations'. It has some plausibility if you think about the physicist's definition of mass, which has to refer to forces etc. Presumably there is one essence for all of reality, instead of separate ones.
1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
On the continent it is generally believed that metaphysics died with Hegel [Benardete,JA on Hegel]
     Full Idea: In continental Europe it is widely believed that the metaphysical game was played out in Hegel.
     From: comment on Georg W.F.Hegel (works [1812]) by José A. Benardete - Metaphysics: the logical approach Intro
2. Reason / B. Laws of Thought / 2. Sufficient Reason
Making sufficient reason an absolute devalues the principle of non-contradiction [Hegel, by Meillassoux]
     Full Idea: Hegel saw that the absolutization of the principle of sufficient reason (which marked the culmination of the belief in the necessity of what is) required the devaluation of the principle of non-contradiction.
     From: report of Georg W.F.Hegel (works [1812], 3) by Quentin Meillassoux - After Finitude; the necessity of contingency 3
     A reaction: I pass this on without understanding it, though a joint study of my collection of ideas on sufficient reason and non-contradiction might make it clear. [Let me know if you can explain it!]
2. Reason / C. Styles of Reason / 1. Dialectic
Rather than in three stages, Hegel presented his dialectic as 'negation of the negation' [Hegel, by Bowie]
     Full Idea: Hegel's 'dialectic' is often characterised in terms of the triad of thesis, antithesis and synthesis. This is, however, not the way he presents it. The core of the dialectic is rather what Hegel terms the 'negation of the negation'.
     From: report of Georg W.F.Hegel (works [1812]) by Andrew Bowie - Introduction to German Philosophy
     A reaction: Interestingly, this connects it to debates about intuitionist logic, which denies that double-negation necessarily makes a positive. Presumably Marx emphasised the first reading.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
Negation of negation doubles back into a self-relationship [Hegel, by Houlgate]
     Full Idea: For Hegel, the 'negation of negation' is negation that, as it were, doubles back on itself and 'relates itself to itself'.
     From: report of Georg W.F.Hegel (works [1812]) by Stephen Houlgate - An Introduction to Hegel 6 'Space'
     A reaction: [ref VNP 1823 p.108] Glad we've cleared that one up.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / A. Nature of Existence / 3. Being / c. Becoming
The dialectical opposition of being and nothing is resolved in passing to the concept of becoming [Hegel, by Scruton]
     Full Idea: The concept of being contains within itself it own negation - nothing - and the dialectical opposition between these two concepts is resolved only in the passage to a new concept, becoming, which contains the truth of the passage from nothing to being.
     From: report of Georg W.F.Hegel (works [1812]) by Roger Scruton - Short History of Modern Philosophy Ch.12
     A reaction: The idea that one concept 'contains' another, or that an opposition could be 'resolved' by a new concept, sounds doubtful to me. For most analytical philosophers, and for Aristotle, oppositions are contradictions, and cannot and should not be 'resolved'.
7. Existence / A. Nature of Existence / 5. Reason for Existence
Hegel gives an ontological proof of the existence of everything [Hegel, by Scruton]
     Full Idea: It would not be unfair to say that Hegel's metaphysics consists of an ontological proof of the existence of everything.
     From: report of Georg W.F.Hegel (works [1812]) by Roger Scruton - Short History of Modern Philosophy Ch.12
     A reaction: This is so gloriously far from David Hume that we must all find some appeal in it. The next question would be whether necessary existence has been proved. If so, given death, decay and entropy, what is it that has to exist? 2nd Law of Thermodynamics?
7. Existence / E. Categories / 4. Category Realism
For Hegel, categories shift their form in the course of history [Hegel, by Houlgate]
     Full Idea: For Hegel, the categories of thought are not fixed, eternal forms that remain unchanged throughout history, but are concepts that alter their meaning in history.
     From: report of Georg W.F.Hegel (works [1812]) by Stephen Houlgate - An Introduction to Hegel 01
     A reaction: This results from a critique of Kant's rather rigid view of categories. This idea is very influential, and certainly counts among Hegel's better ideas.
Our concepts and categories disclose the world, because we are part of the world [Hegel, by Houlgate]
     Full Idea: For Hegel, the structure of our concepts and categories is identical with, and thus discloses, the structure of the world itself, because we ourselves are born into and so share the character of the world we encounter.
     From: report of Georg W.F.Hegel (works [1812]) by Stephen Houlgate - An Introduction to Hegel 01
     A reaction: This is a reasonable speculation, but it makes more sense in the context of natural selection, and an empiricist theory of concepts.
7. Existence / E. Categories / 5. Category Anti-Realism
Hegel said Kant's fixed categories actually vary with culture and era [Hegel, by Houlgate]
     Full Idea: Hegel's disagreement with Kant is that categories are not unambiguously universal forms of human understanding, but are conceived in subtly different ways in different cultures and in different historical epochs.
     From: report of Georg W.F.Hegel (works [1812]) by Stephen Houlgate - Hegel p.95
     A reaction: This may be Hegel's most influential idea. Though he hoped that categories would contain truth, by arising untrammelled from reason, and thereby matching reality. His successors seem to have given up on that hope, and settled for relativism.
12. Knowledge Sources / A. A Priori Knowledge / 5. A Priori Synthetic
Hegel reputedly claimed to know a priori that there are five planets [Hegel, by Field,H]
     Full Idea: Hegel is reputed to have claimed to have deduced on a priori grounds that the number of planets is exactly five.
     From: report of Georg W.F.Hegel (works [1812]) by Hartry Field - Recent Debates on the A Priori 1
     A reaction: Even if this is a wicked travesty of Hegel, it will do nicely to represent the extremes of claims to a priori synthetic knowledge. Field doesn't offer any evidence. I would love it to be true.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / a. Idealistic ethics
The good life aims at perfections, or absolute laws, or what is absolutely desirable [Green,TH]
     Full Idea: The differentia of the good life …is controlled by the consciousness of there being some perfection which has to be fulfilled, some law which has to be obeyed, something absolutely desirable whatever the individual may for the time desire.
     From: T.H. Green (Prolegomena to Ethics [1882], p.134), quoted by John H. Muirhead - The Service of the State II
     A reaction: The 'perfection' suggests Plato, and the 'law' suggests Kant. The idea that something is 'absolutely desirable' is, I suspect, aimed at the utilitarians, who don't care what is desired. I'm no idealist, but have some sympathy with this idea.
23. Ethics / F. Existentialism / 1. Existentialism
Humans have no fixed identity, but produce and reveal their shifting identity in history [Hegel, by Houlgate]
     Full Idea: For Hegel, the absolute truth of humanity is that human beings have no fixed, given identity, but rather determine and produce their own identity and their world in history, and that they gradually come to the recognition of this fact in history.
     From: report of Georg W.F.Hegel (works [1812]) by Stephen Houlgate - An Introduction to Hegel 01
     A reaction: This quintessentially existentialist idea, most obvious in Sartre, seems to have originated with this view of Hegel's.
24. Political Theory / A. Basis of a State / 1. A People / c. A unified people
Hegel's Absolute Spirit is the union of human rational activity at a moment, and whatever that sustains [Hegel, by Eldridge]
     Full Idea: We may take Hegel's Absolute Spirit to be the union of collective, human rational activity at a historical moment with its proper object, the forms of social and individual life that the rational activity is devoted to understanding and sustaining.
     From: report of Georg W.F.Hegel (works [1812]) by Richard Eldridge - G.W.F. Hegel (aesthetics) 1
     A reaction: From this formulation it sounds as if the whole human race might have momentary union, but presumably it is more local 'peoples' that can exhibit this.
24. Political Theory / B. Nature of a State / 2. State Legitimacy / c. Social contract
Society isn’t founded on a contract, since contracts presuppose a society [Hegel, by Scruton]
     Full Idea: For Hegel, society cannot be founded on a contract, since contracts have no reality until society is in place.
     From: report of Georg W.F.Hegel (works [1812]) by Roger Scruton - Modern Philosophy:introduction and survey 28.2
     A reaction: Interesting, and reminiscent of the private language argument, but contracts surely start as deals between individuals (on a desert island?).
24. Political Theory / D. Ideologies / 6. Liberalism / c. Liberal equality
People are improved by egalitarian institutions and habits [Green,TH]
     Full Idea: Man has bettered himself through institutions and habits which tend to make the welfare of all the welfare of each.
     From: T.H. Green (Prolegomena to Ethics [1882], p.180), quoted by John H. Muirhead - The Service of the State II
     A reaction: I like this a lot. We underestimate how the best social values are promoted by the existence of enlightened institutions, rather than by preaching and teaching. Schools, law courts and churche embody their values.
24. Political Theory / D. Ideologies / 6. Liberalism / e. Liberal community
All talk of the progress of a nation must reduce to the progress of its individual members [Green,TH]
     Full Idea: Our ultimate standard of worth is an ideal of personal worth. All other values are relative to personal values. To speak of any progress of a nation or society or mankind except as relative to some greater worth of persons is to use words without meaning.
     From: T.H. Green (Prolegomena to Ethics [1882], p.193), quoted by John H. Muirhead - The Service of the State II
     A reaction: Note that, pre-verificationism, a Victorian talks of plausible words actually being meaningless. This is a good statement of the core doctrine of liberalism.
26. Natural Theory / A. Speculations on Nature / 1. Nature
When man wills the natural, it is no longer natural [Hegel]
     Full Idea: When man wills the natural, it is no longer natural.
     From: Georg W.F.Hegel (works [1812]), quoted by Rosalind Hursthouse - On Virtue Ethics Ch.4
     A reaction: Sounds good, though I'm not sure what it means. The application of the word 'natural' seems a bit arbitrary to me. No objective joint exists between the natural and unnatural. The default position has to be that everything is natural.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
Hegel's entire philosophy is nothing but a monstrous amplification of the ontological proof [Schopenhauer on Hegel]
     Full Idea: Hegel's entire philosophy is nothing but a monstrous amplification of the ontological proof.
     From: comment on Georg W.F.Hegel (works [1812]) by Arthur Schopenhauer - Abstract of 'The Fourfold Root' Ch.II
     A reaction: All massive a priori metaphysics is summed up in this argument, which is right at the core of philosophy.
29. Religion / B. Monotheistic Religion / 4. Christianity / a. Christianity
Hegel said he was offering an encyclopaedic rationalisation of Christianity [Hegel, by Graham]
     Full Idea: Hegel claimed that his philosophy was nothing less than an encyclopaedic rationalisation of the Christian religion.
     From: report of Georg W.F.Hegel (works [1812]) by Gordon Graham - Eight Theories of Ethics Ch.5
     A reaction: Why did he pick Christianity to rationalise? How can you reason properly if you start with a dogma?