Combining Texts

All the ideas for 'works', 'Contributions to Philosophy' and 'The Tarskian Turn'

unexpand these ideas     |    start again     |     specify just one area for these texts


89 ideas

1. Philosophy / D. Nature of Philosophy / 3. Philosophy Defined
Philosophy is the most general intellectual discipline [Horsten]
     Full Idea: Philosophy is the most general intellectual discipline.
     From: Leon Horsten (The Tarskian Turn [2011], 05.1)
     A reaction: Very simple, but exactly how I see the subject. It is continuous with the sciences, and tries to give an account of nature, but operating at an extreme level of generality. It must respect the findings of science, but offer bold interpretations.
2. Reason / D. Definition / 2. Aims of Definition
A definition should allow the defined term to be eliminated [Horsten]
     Full Idea: A definition allows a defined term to be eliminated in every context in which it appears.
     From: Leon Horsten (The Tarskian Turn [2011], 04.2)
     A reaction: To do that, a definition had better be incredibly comprehensive, so that no nice nuance of the original term is thrown out.
3. Truth / A. Truth Problems / 1. Truth
Truth is a property, because the truth predicate has an extension [Horsten]
     Full Idea: I take truth to be a property because the truth predicate has an extension - the collection of all true sentences - and this collection does not (unlike the 'extension' of 'exists') consist of everything, or even of all sentences.
     From: Leon Horsten (The Tarskian Turn [2011], 01.1)
     A reaction: He concedes that it may be an 'uninteresting' property. My problem is always that I am unconvinced that truth is tied to sentences. I can make perfect sense of animal thoughts being right or wrong. Extension of mental propositions?
Semantic theories of truth seek models; axiomatic (syntactic) theories seek logical principles [Horsten]
     Full Idea: There are semantical theories of truth, concerned with models for languages containing the truth predicate, and axiomatic (or syntactic) theories, interested in basic logical principles governing the concept of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 01.1)
     A reaction: This is the map of contemporary debates, which seem now to have given up talking about 'correspondence', 'coherence' etc.
3. Truth / A. Truth Problems / 2. Defining Truth
Truth has no 'nature', but we should try to describe its behaviour in inferences [Horsten]
     Full Idea: We should not aim at describing the nature of truth because there is no such thing. Rather, we should aim at describing the inferential behaviour of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 10.2.3)
3. Truth / A. Truth Problems / 5. Truth Bearers
Propositions have sentence-like structures, so it matters little which bears the truth [Horsten]
     Full Idea: It makes little difference, at least in extensional contexts, whether the truth bearers are propositions or sentences (or assertions). Even if the bearers are propositions rather than sentences, propositions are structured rather like sentences.
     From: Leon Horsten (The Tarskian Turn [2011], 02.4)
     A reaction: The 'extensional' context means you are only talking about the things that are referred to, and not about the way this is expressed. I prefer propositions, but this is an interesting point.
3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
Modern correspondence is said to be with the facts, not with true propositions [Horsten]
     Full Idea: Modern correspondence theorists no longer take things to correspond to true propositions; they consider facts to be the truthmakers of propositions.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: If we then define facts as the way certain things are, independently from our thinking about it, at least we seem to be avoiding circularity. Not much point in correspondence accounts if you are not a robust realist (like me). [14,000th idea, 23/4/12!]
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
The correspondence 'theory' is too vague - about both 'correspondence' and 'facts' [Horsten]
     Full Idea: The principle difficulty of the correspondence theory of truth is its vagueness. It is too vague to be called a theory until more information is given about what is meant by the terms 'correspondence' and 'fact'. Facts can involve a heavy ontology.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: I see nothing here to make me give up my commitment to the correspondence view of truth, though it sounds as if I will have to give up the word 'theory' in that context. Truth is so obviously about thought fitting reality that there is nothing to discuss.
3. Truth / D. Coherence Truth / 2. Coherence Truth Critique
The coherence theory allows multiple coherent wholes, which could contradict one another [Horsten]
     Full Idea: The coherence theory seems too liberal. It seems there can be more than one systematic whole which, while being internally coherent, contradict each other, and thus cannot all be true. Coherence is a necessary but not sufficient condition for truth.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: This is a modern post-Tarski axiomatic truth theorist making very short work indeed of the coherence theory of truth. I take Horsten to be correct.
3. Truth / E. Pragmatic Truth / 1. Pragmatic Truth
The pragmatic theory of truth is relative; useful for group A can be useless for group B [Horsten]
     Full Idea: The pragmatic theory is unsatisfactory because usefulness is a relative notion. One theory can be useful to group A while being thoroughly impractical for group B. This would make the theory both truth and false.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: This objection, along with the obvious fact that certain falsehoods can be very useful, would seem to rule pragmatism out as a theory of truth. It is, in fact, an abandonment of truth.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarski's hierarchy lacks uniform truth, and depends on contingent factors [Horsten]
     Full Idea: According to the Tarskian hierarchical conception, truth is not a uniform notion. ...Also Kripke has emphasised that the level of a token of the truth predicate can depend on contingent factors, such as what else has been said by a speaker.
     From: Leon Horsten (The Tarskian Turn [2011], 04.5)
Tarski Bi-conditional: if you'll assert φ you'll assert φ-is-true - and also vice versa [Horsten]
     Full Idea: The axiom schema 'Sentence "phi;" is true iff φ' is the (unrestricted) Tarski-Biconditional, and is motivated by the thought that if you are willing to assume or outright assert that φ, you will assert that φ is true - and also vice versa.
     From: Leon Horsten (The Tarskian Turn [2011], 02.2)
     A reaction: Very helpful! Most people are just bewildered by the Tarski bi-conditional ('"Snow is white"...), but this formulation nicely shows its minimal character while showing that it really does say something. It says what truths and truth-claims commit you to.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
Semantic theories have a regress problem in describing truth in the languages for the models [Horsten]
     Full Idea: Semantic theories give a class of models with a truth predicate, ...but Tarski taught us that this needs a more encompassing framework than its language...so how is the semantics of the framework expressed? The model route has a regress.
     From: Leon Horsten (The Tarskian Turn [2011], 02.3)
     A reaction: [compressed] So this regress problem, of endless theories of truth going up the hierarchy, is Horsten's main reason for opting for axiomatic theories, which he then tries to strengthen, so that they are not quite so deflated.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
'Reflexive' truth theories allow iterations (it is T that it is T that p) [Horsten]
     Full Idea: A theory of truth is 'reflexive' if it allows us to prove truth-iterations ("It is true that it is true that so-and-so").
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
Axiomatic approaches to truth avoid the regress problem of semantic theories [Horsten]
     Full Idea: The axiomatic approach to truth does not suffer from the regress problem.
     From: Leon Horsten (The Tarskian Turn [2011], 02.3)
     A reaction: See Idea 15345 for the regress problem. The difficulty then seems to be that axiomatic approaches lack expressive power, so the hunt is on for a set of axioms which will do a decent job. Fun work, if you can cope with it.
A good theory of truth must be compositional (as well as deriving biconditionals) [Horsten]
     Full Idea: Deriving many Tarski-biconditionals is not a sufficient condition for being a good theory of truth. A good theory of truth must in addition do justice to the compositional nature of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 06.1)
An axiomatic theory needs to be of maximal strength, while being natural and sound [Horsten]
     Full Idea: The challenge is to find the arithmetically strongest axiomatical truth theory that is both natural and truth-theoretically sound.
     From: Leon Horsten (The Tarskian Turn [2011], 07.7)
The Naďve Theory takes the bi-conditionals as axioms, but it is inconsistent, and allows the Liar [Horsten]
     Full Idea: The Naďve Theory of Truth collects all the Tarski bi-conditionals of a language and takes them as axioms. But no consistent theory extending Peano arithmetic can prove all of them. It is inconsistent, and even formalises the liar paradox.
     From: Leon Horsten (The Tarskian Turn [2011], 03.5.2)
     A reaction: [compressed] This looks to me like the account of truth that Davidson was working with, since he just seemed to be compiling bi-conditionals for tricky cases. (Wrong! He championed the Compositional Theory, Horsten p.71)
Axiomatic theories take truth as primitive, and propose some laws of truth as axioms [Horsten]
     Full Idea: In the axiomatic approach we take the truth predicate to express an irreducible, primitive notion. The meaning of the truth predicate is partially explicated by proposing certain laws of truth as basic principles, as axioms.
     From: Leon Horsten (The Tarskian Turn [2011], 04.2)
     A reaction: Judging by Horsten's book, this is a rather fruitful line of enquiry, but it still seems like a bit of a defeat to take truth as 'primitive'. Presumably you could add some vague notion of correspondence as the background picture.
By adding truth to Peano Arithmetic we increase its power, so truth has mathematical content! [Horsten]
     Full Idea: It is surprising that just by adding to Peano Arithmetic principles concerning the notion of truth, we increase the mathematical strength of PA. So, contrary to expectations, the 'philosophical' notion of truth has real mathematical content.
     From: Leon Horsten (The Tarskian Turn [2011], 06.4)
     A reaction: Horsten invites us to be really boggled by this. All of this is in the Compositional Theory TC. It enables a proof of the consistency of arithmetic (but still won't escape Gödel's Second).
Axiomatic approaches avoid limiting definitions to avoid the truth predicate, and limited sizes of models [Horsten]
     Full Idea: An adequate definition of truth can only be given for the fragment of our language that does not contain the truth predicate. A model can never encompass the whole of the domain of discourse of our language. The axiomatic approach avoids these problems.
     From: Leon Horsten (The Tarskian Turn [2011], 10.1)
3. Truth / G. Axiomatic Truth / 2. FS Truth Axioms
Friedman-Sheard theory keeps classical logic and aims for maximum strength [Horsten]
     Full Idea: The Friedman-Sheard theory of truth holds onto classical logic and tries to construct a theory that is as strong as possible.
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
3. Truth / G. Axiomatic Truth / 3. KF Truth Axioms
Kripke-Feferman has truth gaps, instead of classical logic, and aims for maximum strength [Horsten]
     Full Idea: If we abandon classical logic in favour of truth-value gaps and try to strengthen the theory, this leads to the Kripke-Feferman theory of truth, and variants of it.
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Inferential deflationism says truth has no essence because no unrestricted logic governs the concept [Horsten]
     Full Idea: According to 'inferential deflationism', truth is a concept without a nature or an essence. This is betrayed by the fact that there are no unrestricted logical laws that govern the concept of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 01.1)
Deflationism concerns the nature and role of truth, but not its laws [Horsten]
     Full Idea: Deflationism is not a theory of the laws of truth. It is a view on the nature and role of the concept of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 05 Intro)
Deflationism skips definitions and models, and offers just accounts of basic laws of truth [Horsten]
     Full Idea: Contemporary deflationism about truth does not attempt to define truth, and does not rely on models containing the truth predicate. Instead they are interpretations of axiomatic theories of truth, containing only basic laws of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 02.3)
This deflationary account says truth has a role in generality, and in inference [Horsten]
     Full Idea: On the conception of deflationism developed in this book, the prime positive role of the truth predicate is to serve as a device for expressing generalities, and an inferential tool.
     From: Leon Horsten (The Tarskian Turn [2011], 07.5)
Deflationism says truth isn't a topic on its own - it just concerns what is true [Horsten]
     Full Idea: Deflationism says the theory of truth does not have a substantial domain of its own. The domain of the theory of truth consists of the bearers of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 05.1)
     A reaction: The immediate thought is that truth also concerns falsehoods, which would be inexplicable without it. If physics just concerns the physical, does that mean that physics lacks its own 'domain'? Generalising about the truths is a topic.
Deflation: instead of asserting a sentence, we can treat it as an object with the truth-property [Horsten]
     Full Idea: The Deflationary view just says that instead of asserting a sentence, we can turn the sentence into an object and assert that this object has the property of truth.
     From: Leon Horsten (The Tarskian Turn [2011], 05.2.2)
     A reaction: That seems to leave a big question hanging, which concerns the nature of the property that is being attributed to this object. Quine 1970:10-13 says it is just a 'device'. Surely you can rest content with that as an account of truth?
4. Formal Logic / E. Nonclassical Logics / 1. Nonclassical Logics
Nonclassical may accept T/F but deny applicability, or it may deny just T or F as well [Horsten]
     Full Idea: Some nonclassical logic stays close to classical, assuming two mutually exclusive truth values T and F, but some sentences fail to have one. Others have further truth values such as 'half truth', or dialethists allow some T and F at the same time.
     From: Leon Horsten (The Tarskian Turn [2011], 01.2)
     A reaction: I take that to say that the first lot accept bivalence but reject excluded middle (allowing 'truth value gaps'), while the second lot reject both. Bivalence gives the values available, and excluded middle says what has them.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Doubt is thrown on classical logic by the way it so easily produces the liar paradox [Horsten]
     Full Idea: Aside from logic, so little is needed to generate the liar paradox that one wonders whether the laws of classical logic are unrestrictedly valid after all. (Many theories of truth have therefore been formulated in nonclassical logic.)
     From: Leon Horsten (The Tarskian Turn [2011], 01.2)
     A reaction: Kripke uses Strong Kleene logic for his theory. The implication is that debates discussed by Horsten actually have the status of classical logic at stake, as well as the nature of truth.
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Deduction Theorem: ψ only derivable from φ iff φ→ψ are axioms [Horsten]
     Full Idea: The Deduction Theorem says ψ is derivable in classical predicate logic from ψ iff the sentence φ→ψ is a theorem of classical logic. Hence inferring φ to ψ is truth-preserving iff the axiom scheme φ→ψ is provable.
     From: Leon Horsten (The Tarskian Turn [2011], 02.2)
     A reaction: Horsten offers this to show that the Tarski bi-conditionals can themselves be justified, and not just the rule of inference involved. Apparently you can only derive something if you first announce that you have the ability to derive it. Odd.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is 'non-conservative' if it facilitates new mathematical proofs [Horsten]
     Full Idea: A theory is 'non-conservative' if it allows us to prove mathematical facts that go beyond what the background mathematical theory can prove on its own.
     From: Leon Horsten (The Tarskian Turn [2011], 01.4)
     A reaction: This is an instance of the relationship with mathematics being used as the test case for explorations of logic. It is a standard research method, because it is so precise, but should not be mistaken for the last word about a theory.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
It is easier to imagine truth-value gaps (for the Liar, say) than for truth-value gluts (both T and F) [Horsten]
     Full Idea: It is easier to imagine what it is like for a sentence to lack a truth value than what it is like for a sentence to be both truth and false. So I am grudgingly willing to entertain the possibility that certain sentences (like the Liar) lack a truth value.
     From: Leon Horsten (The Tarskian Turn [2011], 02.5)
     A reaction: Fans of truth value gluts are dialethists like Graham Priest. I'm with Horsten on this one. But in what way can a sentence be meaningful if it lacks a truth-value? He mentions unfulfilled presuppositions and indicative conditionals as gappy.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Satisfaction is a primitive notion, and very liable to semantical paradoxes [Horsten]
     Full Idea: Satisfaction is a more primitive notion than truth, and it is even more susceptible to semantical paradoxes than the truth predicate.
     From: Leon Horsten (The Tarskian Turn [2011], 06.3)
     A reaction: The Liar is the best known paradox here. Tarski bases his account of truth on this primitive notion, so Horsten is pointing out the difficulties.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
The first incompleteness theorem means that consistency does not entail soundness [Horsten]
     Full Idea: It is a lesson of the first incompleteness theorem that consistency does not entail soundness. If we add the negation of the gödel sentence for PA as an extra axiom to PA, the result is consistent. This negation is false, so the theory is unsound.
     From: Leon Horsten (The Tarskian Turn [2011], 04.3)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michčle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Strengthened Liar: 'this sentence is not true in any context' - in no context can this be evaluated [Horsten]
     Full Idea: The Strengthened Liar sentence says 'this sentence is not true in any context'. It is not hard to figure out that there is no context in which the sentence can be coherently evaluated.
     From: Leon Horsten (The Tarskian Turn [2011], 04.6)
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
English expressions are denumerably infinite, but reals are nondenumerable, so many are unnameable [Horsten]
     Full Idea: The number of English expressions is denumerably infinite. But Cantor's theorem can be used to show that there are nondenumerably many real numbers. So not every real number has a (simple or complex name in English).
     From: Leon Horsten (The Tarskian Turn [2011], 06.3)
     A reaction: This really bothers me. Are we supposed to be committed to the existence of entities which are beyond our powers of naming? How precise must naming be? If I say 'pick a random real number', might that potentially name all of them?
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
ZFC showed that the concept of set is mathematical, not logical, because of its existence claims [Horsten]
     Full Idea: One of the strengths of ZFC is that it shows that the concept of set is a mathematical concept. Many originally took it to be a logical concept. But ZFC makes mind-boggling existence claims, which should not follow if it was a logical concept.
     From: Leon Horsten (The Tarskian Turn [2011], 05.2.3)
     A reaction: This suggests that set theory is not just a way of expressing mathematics (see Benacerraf 1965), but that some aspect of mathematics has been revealed by it - maybe even its essential nature.
Set theory is substantial over first-order arithmetic, because it enables new proofs [Horsten]
     Full Idea: The nonconservativeness of set theory over first-order arithmetic has done much to establish set theory as a substantial theory indeed.
     From: Leon Horsten (The Tarskian Turn [2011], 07.5)
     A reaction: Horsten goes on to point out the price paid, which is the whole new ontology which has to be added to the arithmetic. Who cares? It's all fictions anyway!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Predicativism says mathematical definitions must not include the thing being defined [Horsten]
     Full Idea: Predicativism has it that a mathematical object (such as a set of numbers) cannot be defined by quantifying over a collection that includes that same mathematical object. To do so would be a violation of the vicious circle principle.
     From: Leon Horsten (The Tarskian Turn [2011], 07.7)
     A reaction: In other words, when you define an object you are obliged to predicate something new, and not just recycle the stuff you already have.
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
We may believe in atomic facts, but surely not complex disjunctive ones? [Horsten]
     Full Idea: While positive and perhaps even negative atomic facts may be unproblematic, it seems excessive to commit oneself to the existence of logically complex facts such as disjunctive facts.
     From: Leon Horsten (The Tarskian Turn [2011], 02.1)
     A reaction: Presumably it is hard to deny that very complex statements involving massive disjunctions can be true or false. But why does commitment to real facts have to involve a huge ontology? The ontology is just the ingredients of the fact, isn't it?
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
In the supervaluationist account, disjunctions are not determined by their disjuncts [Horsten]
     Full Idea: If 'Britain is large' and 'Italy is large' lack truth values, then so must 'Britain or Italy is large' - so on the supervaluationist account the truth value of a disjunction is not determined by the truth values of its disjuncts.
     From: Leon Horsten (The Tarskian Turn [2011], 06.2)
     A reaction: Compare Idea 15362 to get the full picture here.
If 'Italy is large' lacks truth, so must 'Italy is not large'; but classical logic says it's large or it isn't [Horsten]
     Full Idea: If 'Italy is a large country' lacks a truth value, then so too, presumably, does 'Italy is not a large country'. But 'Italy is or is not a large country' is true, on the supervaluationist account, because it is a truth of classical propositional logic.
     From: Leon Horsten (The Tarskian Turn [2011], 06.2)
     A reaction: See also Idea 15363. He cites Fine 1975.
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Some claim that indicative conditionals are believed by people, even though they are not actually held true [Horsten]
     Full Idea: In the debate about doxastic attitudes towards indicative conditional sentences, one finds philosophers who claim that conditionals can be believed even though they have no truth value (and thus are not true).
     From: Leon Horsten (The Tarskian Turn [2011], 09.3)
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michčle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
19. Language / C. Assigning Meanings / 1. Syntax
A theory of syntax can be based on Peano arithmetic, thanks to the translation by Gödel coding [Horsten]
     Full Idea: A notion of formal provability can be articulated in Peano arithmetic. ..This is surprisingly 'linguistic' rather than mathematical, but the key is in the Gödel coding. ..Hence we use Peano arithmetic as a theory of syntax.
     From: Leon Horsten (The Tarskian Turn [2011], 02.4)
     A reaction: This is the explanation of why issues in formal semantics end up being studied in systems based on formal arithmetic. And I had thought it was just because they were geeks who dream in numbers, and can't speak language properly...
23. Ethics / F. Existentialism / 4. Boredom
Culture is now dominated by boredom, so universal it is unnoticed [Heidegger, by Aho]
     Full Idea: Heidegger came to say that the cultural mood had changed from 'anxiety' to 'boredom'. The danger is that our boredom has become so ubiquitous and all-encompassing that it is now hidden.
     From: report of Martin Heidegger (Contributions to Philosophy [1938]) by Kevin Aho - Existentialism: an introduction 9 'Conc'
     A reaction: I'm not sure what the danger of boredom is if it is 'hidden'. It rather depends what else is hidden with it.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.