Combining Texts

All the ideas for 'works', 'New Scientist articles' and 'Meaning and Reference'

unexpand these ideas     |    start again     |     specify just one area for these texts


75 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / A. Nature of Existence / 5. Reason for Existence
Current physics says matter and antimatter should have reduced to light at the big bang [New Sci.]
     Full Idea: Our best theories of physics imply we shouldn't be here. The big bang ought to have produced equal amounts of matter and antimatter particles, which would have almost immediately annihilated each other, leaving nothing but light.
     From: New Scientist writers (New Scientist articles [2013], 2015.05.23)
     A reaction: This is not, of course, a rejection of physics, but a puzzle about the current standard model of physics.
CP violation shows a decay imbalance in matter and antimatter, leading to matter's dominance [New Sci.]
     Full Idea: The phenomenon of charge-parity (CP) violation says that under certain circumstances antiparticles decay at different rates from their matter counterpart. ...This might explain matter's dominance in the universe, but the effect is too small.
     From: New Scientist writers (New Scientist articles [2013], 2015.05.23)
     A reaction: Physicists are currently studying CP violations, hoping to explain why there is any matter in the universe. This will not, I presume, explain why matter and antimatter arrived in the first place.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
A statement can be metaphysically necessary and epistemologically contingent [Putnam]
     Full Idea: A statement can be (metaphysically) necessary and epistemologically contingent. Human intuition has no privileged access to metaphysical necessity.
     From: Hilary Putnam (Meaning and Reference [1973], p.160)
     A reaction: The terminology here is dangerously confusing. 'Contingent' is a term which (as Kripke insists) refers to reality, not to our epistemological abilities. The locution of adding the phrase "for all I know" seems to handle the problem better.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
Conceivability is no proof of possibility [Putnam]
     Full Idea: Conceivability is no proof of possibility.
     From: Hilary Putnam (Meaning and Reference [1973], p.159)
     A reaction: This strikes me as a really basic truth which all novice philosophers should digest. It led many philosophers, especially rationalists, into all sorts of ill-founded claims about what is possible or necessary. Zombies, for instance…
14. Science / A. Basis of Science / 4. Prediction
A system can infer the structure of the world by making predictions about it [New Sci.]
     Full Idea: If we can train a system for prediction, it can essentially infer the structure of the world it's looking at by doing this prediction.
     From: New Scientist writers (New Scientist articles [2013], 2015.12.12)
     A reaction: [AI expert] This seems to be powerful support for the centrality of mathematical laws of nature in achieving understanding of the world. We may downplay the 'mere' ability to predict, but this idea says that the rewards of prediction are very great.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
Neural networks can extract the car-ness of a car, or the chair-ness of a chair [New Sci.]
     Full Idea: Early neural nets were really good at recognising general categories, such as a car or a chair. Those networks are good at extracting the 'chair-ness' or the 'car-ness' of the object.
     From: New Scientist writers (New Scientist articles [2013], 2015.12.12)
     A reaction: [Interview with Yann LeCun, Facebook AI director] Fregean philosophers such as Geach think that extracting features is a ridiculous idea, but if even a machine can do it then I suspect that human beings can (and do) manage it too.
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
No one has yet devised a rationality test [New Sci.]
     Full Idea: The financial sector has been clamouring for a rationality test for years.
     From: New Scientist writers (New Scientist articles [2013], 2013.10.29)
     A reaction: Many aspects of intelligence tests do actually pick out what I would call rationality (which includes 'rational intuition', a new favourite of mine). But they are mixed in with rather mechanical geeky sort of tests.
18. Thought / A. Modes of Thought / 7. Intelligence
About a third of variation in human intelligence is environmental [New Sci.]
     Full Idea: Possibly a third of the variation in our intelligence is down to the environment in which we grew up - nutrition and education, for example.
     From: New Scientist writers (New Scientist articles [2013], 2013.10.29)
     A reaction: This presumably leaves the other two-thirds to derive from genetics. I am a big believer in environment. Swapping babies between extremes of cultural environment would hugely affect intelligence, say I.
People can be highly intelligent, yet very stupid [New Sci.]
     Full Idea: You really can be highly intelligent, and at the same time very stupid.
     From: New Scientist writers (New Scientist articles [2013], 2013.10.29)
     A reaction: This is closely related to my observation (from a lifetime of study) that a talent for philosophy has a very limited correlation with standard notions of high intelligence. What matters is how conscious reasoning and intuition relate. Greek 'phronesis'.
18. Thought / B. Mechanics of Thought / 1. Psychology
Psychologists measure personality along five dimensions [New Sci.]
     Full Idea: Psychologists have long thought that measuring on a scale of just five personality dimensions - agreeableness, extroversion, neuroticism, conscientiousness and openness to new experiences - can capture all human variations in behaviour and attitude.
     From: New Scientist writers (New Scientist articles [2013], 2015.06.13)
     A reaction: Researchers are considering a sixth - called 'honesty-humility' - which is roughly how devious people are. The five mentioned here seem to be a well entrenched orthodoxy among professional psychologists. Is personality more superficial than character?
18. Thought / C. Content / 6. Broad Content
I can't distinguish elm trees, but I mean by 'elm' the same set of trees as everybody else [Putnam]
     Full Idea: My concept of an elm tree is exactly the same as my concept of a beech tree (I blush to confess). ..We still say that the extension of 'elm' in my idiolect is the same as the extension of 'elm' in anyone else's, viz. the set of all elm trees.
     From: Hilary Putnam (Meaning and Reference [1973], p.154)
     A reaction: This example is clearer and less open to hair-splitting than his water/XYZ example. You could, with Putnam, say that his meaning of 'elm' is outside his head, but you could also say that he doesn't understand the word very well.
'Water' has an unnoticed indexical component, referring to stuff around here [Putnam]
     Full Idea: Our theory can be summarized as saying that words like 'water' have an unnoticed indexical component: "water" is stuff that bears a certain similarity relation to the water around here.
     From: Hilary Putnam (Meaning and Reference [1973], p.160)
     A reaction: This is the causal theory of reference, which leads to externalism about concepts, which leads to an externalist view of thought, which undermines internal accounts of the mind like functionalism, and leaves little room for scepticism… Etc.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
19. Language / B. Reference / 3. Direct Reference / c. Social reference
We need to recognise the contribution of society and of the world in determining reference [Putnam]
     Full Idea: Traditional semantic theory leaves out two contributions to the determination of reference - the contribution of society and the contribution of the real world; a better semantic theory must encompass both.
     From: Hilary Putnam (Meaning and Reference [1973], p.161)
     A reaction: I strongly agree that there is a social aspect to reference-fixing, but I am much more dubious about the world 'determining' anything. The whole of his Twin Earth point could be mopped up by a social account, with 'experts' as the key idea.
19. Language / F. Communication / 4. Private Language
Language is more like a cooperative steamship than an individual hammer [Putnam]
     Full Idea: There are tools like a hammer used by one person, and there are tools like a steamship which require cooperative activity; words have been thought of too much on the model of the first sort of tool.
     From: Hilary Putnam (Meaning and Reference [1973], p.156)
     A reaction: This clear thought strikes me as the most fruitful and sensible consequence of Wittgenstein's later ideas (as opposed to the relativistic 'language game' ideas). I am unconvinced that a private language is logically impossible, but it would be feeble.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / b. Scientific necessity
If water is H2O in the actual world, there is no possible world where it isn't H2O [Putnam]
     Full Idea: Once we have discovered that water (in the actual world) is H2O, nothing counts as a possible world in which water isn't H2O.
     From: Hilary Putnam (Meaning and Reference [1973], p.159)
     A reaction: Presumably there could be a possible world in which water is a bit cloudy, so the fact that it is H2O is being judged as essential. Presumably the scientists in the possible world might discover that we are wrong about the chemistry of water?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Entropy is the only time-asymmetric law, so time may be linked to entropy [New Sci.]
     Full Idea: All our physical laws are time-symmetric, ...so things can run forwards or backwards. But entropy is an exception, saying that disorder increases over time. Many physicists therefore suspect that the flow of time is linked to entropy.
     From: New Scientist writers (New Scientist articles [2013], 2017.02.04)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Light moves at a constant space-time speed, but its direction is in neither space nor time [New Sci.]
     Full Idea: A light ray always moves at one unit of space per unit of time - a constant diagonal on the graph. ...But the direction that light rays travel in is neither space nor time, and is called 'null'. It is on the edge between space and time.
     From: New Scientist writers (New Scientist articles [2013], 2013.06.15)
     A reaction: Don't understand this, but it sounds fun.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum states are measured by external time, of unknown origin [New Sci.]
     Full Idea: When we measure the evolution of a quantum state, it is to the beat of an external timepiece of unknown provenance.
     From: New Scientist writers (New Scientist articles [2013], 2013.06.15)
     A reaction: It is best not to leap to philosophical conclusions when studying modern physics. Evidently time has a very different status in quantum mechanics and in relativity theory.
The Schrödinger equation describes the evolution of an object's wave function in Hilbert space [New Sci.]
     Full Idea: A quantum object's state is described by a wave function living in Hilbert space, encompassing all of its possible states. We see how the wave function evolves in time, moving from one state to another, using the Schrödinger equation.
     From: New Scientist writers (New Scientist articles [2013], 2013.06.15)
     A reaction: [These idea are basic explanations for non-scientific philosophers - please forgive anything that makes you wince]
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
In string theory space-time has a grainy indivisible substructure [New Sci.]
     Full Idea: String theory suggests that space-time has a grainy substructure - you can't keep chopping it indefinitely into smaller and smaller pieces.
     From: New Scientist writers (New Scientist articles [2013], 2015.11.07)
     A reaction: Presumably the proposal is that strings are the true 'atoms'.
String theory needs at least 10 space-time dimensions [New Sci.]
     Full Idea: String theory needs at least 10 space-time dimensions to be mathematically consistent.
     From: New Scientist writers (New Scientist articles [2013], 2013.06.15)
     A reaction: Apparently because of 'Ads/CFT', it may be possible to swap this situation for a more tractable 4-dimensional version.
It is impossible for find a model of actuality among the innumerable models in string theory [New Sci.]
     Full Idea: String theory has more than 10-to-the-500th solutions, each describing a different sort of universe, so it is nigh-on impossible to find the one solution that corresponds to our geometrically flat, expanding space-time full of particles.
     From: New Scientist writers (New Scientist articles [2013], 2015.11.07)
27. Natural Reality / C. Space / 2. Space
Hilbert Space is an abstraction representing all possible states of a quantum system [New Sci.]
     Full Idea: The elements of the abstract mathematical entity called Hilbert Space represent all the possible states of a quantum system
     From: New Scientist writers (New Scientist articles [2013], 1017.02.04)
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
27. Natural Reality / C. Space / 6. Space-Time
Space-time may be a geometrical manifestation of quantum entanglement [New Sci.]
     Full Idea: A promising theory (based on the 'Maldacena duality' - that string equations for gravity are the same as quantum equations for surface area) is that space-time is really just geometrical manifestations of quantum entanglement.
     From: New Scientist writers (New Scientist articles [2013], 2015.11.07)
     A reaction: This is a speculation which might unite the incompatible quantum and general relativity theories.
Relativity makes time and space jointly basic; quantum theory splits them, and prioritises time [New Sci.]
     Full Idea: Relativity says space and time are on the same footing - together they are the fabric of reality. Quantum mechanics, on the other hand, treats time and space differently, with time occasionally seeming more fundamental.
     From: New Scientist writers (New Scientist articles [2013], 2013.06.15)
     A reaction: Interesting. When talking about time, people glibly cite relativistic space-time to tell you that time is just another dimension. Now I can reply 'Aaah, but what about time in quantum mechanics? Eh? Eh?'. Excellent.
Einstein's merging of time with space has left us confused about the nature of time [New Sci.]
     Full Idea: Our hunt for the most basic ingredients of reality has left us muddled about the status of time. One culprit for this was Einstein, whose theory of general relativity merged time with space.
     From: New Scientist writers (New Scientist articles [2013], 2017.02.04)
27. Natural Reality / D. Time / 1. Nature of Time / d. Time as measure
Quantum theory relies on a clock outside the system - but where is it located? [New Sci.]
     Full Idea: After general relativity, quantum mechanics reinstated our familiar notion of time. The buzzing of the quantum world plays out according to the authoritative tick of a clock outside the described system, ...but where is this clock doing its ticking?
     From: New Scientist writers (New Scientist articles [2013], 2017.02.04)
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Entropy is puzzling, so we may need to build new laws which include time directionality [New Sci.]
     Full Idea: Smolin observes that if entropy increases, the early universe must have been highly ordered, which we cannot explain. Maybe we need to build time directionality into the laws, instead of making time depend on entropy.
     From: New Scientist writers (New Scientist articles [2013], 2017.02.04)
     A reaction: [compressed]
27. Natural Reality / E. Cosmology / 7. Black Holes
General relativity predicts black holes, as former massive stars, and as galaxy centres [New Sci.]
     Full Idea: Black holes are predicted by general relativity, and are thought to exist where massive stars once lived, as well as at the heart of every galaxy.
     From: New Scientist writers (New Scientist articles [2013], 2013.06.15)
     A reaction: Since black holes now seem to be a certainty, that is one hell of an impressive prediction.
Black holes have entropy, but general relativity says they are unstructured, and lack entropy [New Sci.]
     Full Idea: Black holes have a temperature, and hence entropy. ...But if a black hole are just an extreme scrunching of smooth space-time, it should have no substructure, and thus no entropy. This is probably the most obvious incompleteness of general relativity.
     From: New Scientist writers (New Scientist articles [2013], 2015.11.07)
27. Natural Reality / E. Cosmology / 8. Dark Matter
84.5 percent of the universe is made of dark matter [New Sci.]
     Full Idea: Dark matter makes up 84.5 percent of the universe's matter.
     From: New Scientist writers (New Scientist articles [2013], 2013.10.29)
27. Natural Reality / F. Chemistry / 1. Chemistry
We are halfway to synthesising any molecule we want [New Sci.]
     Full Idea: Ei-ichi Negishi (Nobel chemist of 2010) says 'the ultimate goal is to be able to synthesise any molecule we want. We are probably about halfway there'.
     From: New Scientist writers (New Scientist articles [2013], 2010.10.16)
27. Natural Reality / F. Chemistry / 3. Periodic Table
Chemistry just needs the periodic table, and protons, electrons and neutrinos [New Sci.]
     Full Idea: Ei-ichi Negishi (Nobel chemist of 2010) says 'I work with the periodic table in front of me at all times, and approach all challenges in terms of three particles, positively charged protons, negatively charged electrons, and neutral neutrinos'.
     From: New Scientist writers (New Scientist articles [2013], 2010.10.16)
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.