Combining Texts

All the ideas for 'works', 'Mental Acts: their content and their objects' and 'Things qua Truthmakers'

unexpand these ideas     |    start again     |     specify just one area for these texts


59 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
Every proposition is entirely about being [Lewis]
     Full Idea: Every proposition, no matter what subject matter it may have, is entirely about being.
     From: David Lewis (Things qua Truthmakers [2003], p.26), quoted by Trenton Merricks - Truth and Ontology 4.VI
     A reaction: Since Lewis's propositions are sets of possible worlds, I presume this claim is made because proposition relates to all of the possible worlds, which therefore presumably embody Being.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Attributes are functions, not objects; this distinguishes 'square of 2' from 'double of 2' [Geach]
     Full Idea: Attributes should not be thought of as identifiable objects. It is better to follow Frege and compare them to mathematical functions. 'Square of' and 'double of' x are distinct functions, even though they are not distinguishable in thought when x is 2.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §11)
     A reaction: Attributes are features of the world, of which animals are well aware, and the mathematical model is dubious when dealing with physical properties. The route to arriving at 2 is not the same concept as 2. There are many roads to Rome.
9. Objects / F. Identity among Objects / 9. Sameness
Being 'the same' is meaningless, unless we specify 'the same X' [Geach]
     Full Idea: "The same" is a fragmentary expression, and has no significance unless we say or mean "the same X", where X represents a general term. ...There is no such thing as being just 'the same'.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §16)
     A reaction: Geach seems oddly unaware of the perfect identity of Hespherus with Phosphorus. His critics don't spot that he was concerned with identity over time (of 'the same man', who ages). Perry's critique emphasises the type/token distinction.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
A big flea is a small animal, so 'big' and 'small' cannot be acquired by abstraction [Geach]
     Full Idea: A big flea or rat is a small animal, and a small elephant is a big animal, so there can be no question of ignoring the kind of thing to which 'big' or 'small' is referred and forming those concepts by abstraction.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §9)
     A reaction: Geach is attacking a caricature of the theory. Abstraction is a neat mental trick which has developed in stages, from big rats relative to us, to big relative to other rats, to the concept of 'relative' (Idea 8776!), to the concept of 'relative bigness'.
We cannot learn relations by abstraction, because their converse must be learned too [Geach]
     Full Idea: Abstractionists are unaware of the difficulty with relations - that they neither exist nor can be observed apart from the converse relation, the two being indivisible, as in grasping 'to the left of' and 'to the right of'.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §9)
     A reaction: It is hard to see how a rival account such as platonism could help. It seems obvious to me that 'right' and 'left' would be quite meaningless without some experience of things in space, including an orientation to them.
17. Mind and Body / B. Behaviourism / 2. Potential Behaviour
You can't define real mental states in terms of behaviour that never happens [Geach]
     Full Idea: We can't take a statement that two men, whose overt behaviour was not actually different, were in different states of mind as being really a statement that the behaviour of one man would have been different in hypothetical circumstances that never arose.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §3)
     A reaction: This is the whole problem with trying to define the mind as dispositions. The same might be said of properties, since some properties are active, but others are mere potential or disposition. Hence 'process' looks to me the most promising word for mind.
17. Mind and Body / B. Behaviourism / 4. Behaviourism Critique
Beliefs aren't tied to particular behaviours [Geach]
     Full Idea: Is there any behaviour characteristic of a given belief?
     From: Peter Geach (Mental Acts: their content and their objects [1957], §4)
     A reaction: Well, yes. Belief that a dog is about to bite you. Belief that this nice food is yours, and you are hungry. But he has a good point. He is pointing out that the mental state is a very different thing from the 'disposition' to behave in a certain way.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / D. Concepts / 2. Origin of Concepts / a. Origin of concepts
The mind does not lift concepts from experience; it creates them, and then applies them [Geach]
     Full Idea: Having a concept is not recognizing a feature of experience; the mind makes concepts. We then fit our concepts to experience.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §11)
     A reaction: This seems to imply that we create concepts ex nihilo, which is a rather worse theory than saying that we abstract them from multiple (and multi-level) experiences. That minds create concepts is a truism. How do we do it?
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
If someone has aphasia but can still play chess, they clearly have concepts [Geach]
     Full Idea: If a man struck with aphasia can still play bridge or chess, I certainly wish to say he still has the concepts involved in the game, although he can no longer exercise them verbally.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §5)
     A reaction: Geach proceeds thereafter to concentrate on language, but this caveat is crucial. To suggest that concepts are entirely verbal has always struck me as ridiculous, and an insult to our inarticulate mammalian cousins.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
'Abstractionism' is acquiring a concept by picking out one experience amongst a group [Geach]
     Full Idea: I call 'abstractionism' the doctrine that a concept is acquired by a process of singling out in attention some one feature given in direct experience - abstracting it - and ignoring the other features simultaneously given - abstracting from them.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §6)
     A reaction: Locke seems to be the best known ancestor of this view, and Geach launches a vigorous attack against it. However, contemporary philosophers still refer to the process, and I think Geach should be crushed and this theory revived.
18. Thought / E. Abstraction / 8. Abstractionism Critique
'Or' and 'not' are not to be found in the sensible world, or even in the world of inner experience [Geach]
     Full Idea: Nowhere in the sensible world could you find anything to be suitably labelled 'or' or 'not'. So the abstractionist appeals to an 'inner sense', or hesitation for 'or', and of frustration or inhibition for 'not'. Personally I see a threat in 'or else'!
     From: Peter Geach (Mental Acts: their content and their objects [1957], §7)
     A reaction: This is a key argument of Geach's against abstractionism. As a logician he prefers to discuss connectives rather than, say, colours. I think they might be meta-abstractions, which you create internally once you have picked up the knack.
We can't acquire number-concepts by extracting the number from the things being counted [Geach]
     Full Idea: The number-concepts just cannot be got by concentrating on the number and abstracting from the kind of things being counted.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §8)
     A reaction: This point is from Frege - that if you 'abstract away' everything apart from the number, you are simply left with nothing in experience. The objection might, I think, be met by viewing it as second-order abstraction, perhaps getting to a pattern first.
Abstractionists can't explain counting, because it must precede experience of objects [Geach]
     Full Idea: The way counting is learned is wholly contrary to abstractionist preconceptions, because the series of numerals has to be learned before it can be applied.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §8)
     A reaction: You might learn to parrot the names of numbers, but you could hardly know what they meant if you couldn't count anything. See Idea 3907. I would have thought that individuating objects must logically and pedagogically precede counting.
The numbers don't exist in nature, so they cannot have been abstracted from there into our languages [Geach]
     Full Idea: The pattern of the numeral series that is grasped by a child exists nowhere in nature outside human languages, so the human race cannot possibly have discerned this pattern by abstracting it from some natural context.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §8)
     A reaction: This is a spectacular non sequitur, which begs the question. Abstractionists precisely claim that the process of abstraction brings numerals into human language from the natural context. Structuralism is an attempt to explain the process.
Blind people can use colour words like 'red' perfectly intelligently [Geach]
     Full Idea: It is not true that men born blind can form no colour-concepts; a man born blind can use the word 'red' with a considerable measure of intelligence; he can show a practical grasp of the logic of the word.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §10)
     A reaction: Weak. It is obvious that they pick up the word 'red' from the usage of sighted people, and the usage of the word doesn't guarantee a grasp of the concept, as when non-mathematicians refer to 'calculus'. Compare Idea 7377 and Idea 7866.
If 'black' and 'cat' can be used in the absence of such objects, how can such usage be abstracted? [Geach]
     Full Idea: Since we can use the terms 'black' and 'cat' in situations not including any black object or any cat, how could this part of the use be got by abstraction?
     From: Peter Geach (Mental Acts: their content and their objects [1957], §10)
     A reaction: [He is attacking H.H. Price] It doesn't seem a huge psychological leap to apply the word 'cat' when we remember a cat, and once it is in the mind we can play games with our abstractions. Cats are smaller than dogs.
We can form two different abstract concepts that apply to a single unified experience [Geach]
     Full Idea: It is impossible to form the concept of 'chromatic colour' by discriminative attention to a feature given in my visual experience. In seeing a red window-pane, I do not have two sensations, one of redness and one of chromatic colour.
     From: Peter Geach (Mental Acts: their content and their objects [1957], §10)
     A reaction: Again Geach begs the question, because abstractionists claim that you can focus on two different 'aspects' of the one experience, as that it is a 'window', or it is 'red', or it is not a wall, or it is not monochrome.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.