Combining Texts

All the ideas for 'works', 'works' and 'Parts of Classes'

unexpand these ideas     |    start again     |     specify just one area for these texts


78 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Sets are mereological sums of the singletons of their members [Lewis, by Armstrong]
     Full Idea: Lewis pointed out that many-membered classes are nothing more than the mereological wholes of the classes formed by taking the singleton of each member.
     From: report of David Lewis (Parts of Classes [1991]) by David M. Armstrong - Truth and Truthmakers 09.4
     A reaction: You can't combine members to make the class, because the whole and the parts are of different type, but here the parts and whole are both sets, so they combine like waterdrops.
We can build set theory on singletons: classes are then fusions of subclasses, membership is the singleton [Lewis]
     Full Idea: The notion of a singleton, or unit set, can serve as the distinctive primitive of set theory. The rest is mereology: a class is the fusion of its singleton subclasses, something is a member of a class iff its singleton is part of that class.
     From: David Lewis (Parts of Classes [1991], Pref)
     A reaction: This is a gloriously bold proposal which I immediately like, because it cuts out the baffling empty set (which many people think 'exists'!), and gets mathematics back to being about the real world of entities (as the Greeks thought).
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
Classes divide into subclasses in many ways, but into members in only one way [Lewis]
     Full Idea: A class divides exhaustively into subclasses in many different ways; whereas a class divides exhaustively into members in only one way.
     From: David Lewis (Parts of Classes [1991], 1.2)
A subclass of a subclass is itself a subclass; a member of a member is not in general a member [Lewis]
     Full Idea: Just as a part of a part is itself a part, so a subclass of a subclass is itself a subclass; whereas a member of a member is not in general a member.
     From: David Lewis (Parts of Classes [1991], 1.2)
     A reaction: Lewis is showing the mereological character of sets, but this is a key distinction in basic set theory. When the members of members are themselves members, the set is said to be 'transitive'.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We needn't accept this speck of nothingness, this black hole in the fabric of Reality! [Lewis]
     Full Idea: Must we accept the null set as a most extraordinary individual, a little speck of sheer nothingness, a sort of black hole in the fabric of Reality itself? Not really.
     From: David Lewis (Parts of Classes [1991], 1.4)
     A reaction: We can only dream of reaching the level of confidence that Lewis reached, to make such beautiful fun of a highly counterintuitive idea that is rooted in the modern techniques of philosophy.
We can accept the null set, but there is no null class of anything [Lewis]
     Full Idea: There is no such class as the null class. I don't mind calling some memberless thing - some individual - the null 'set'. But that doesn't make it a memberless class.
     From: David Lewis (Parts of Classes [1991], 1.2)
     A reaction: The point is that set theory is a formal system which can do what it likes, but classes are classes 'of' things. Everyone assumes that sets are classes, reserving 'proper classes' for the tricky cases up at the far end.
There are four main reasons for asserting that there is an empty set [Lewis]
     Full Idea: The null set is a denotation of last resort for class-terms that fail to denote classes, an intersection of x and y where they have no members in common, the class of all self-members, and the real numbers such that x^2+1=0. This is all mere convenience.
     From: David Lewis (Parts of Classes [1991], 1.4)
     A reaction: A helpful catalogue of main motivations for the existence of the null set in set theory. Lewis aims to undermine these reasons, and dispense with the wretched thing.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If we don't understand the singleton, then we don't understand classes [Lewis]
     Full Idea: Our utter ignorance about the nature of the singletons amounts to sheer ignorance about the nature of classes generally.
     From: David Lewis (Parts of Classes [1991], 2.1)
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
We can replace the membership relation with the member-singleton relation (plus mereology) [Lewis]
     Full Idea: Given the theory of part and whole, the member-singleton relation may replace membership generally as the primitive notion of set theory.
     From: David Lewis (Parts of Classes [1991], Pref)
     A reaction: An obvious question is to ask what the member-singleton relation is if it isn't membership.
If singleton membership is external, why is an object a member of one rather than another? [Lewis]
     Full Idea: Suppose the relation of member to singleton is external. Why must Possum be a member of one singleton rather than another? Why isn't it contingent which singleton is his?
     From: David Lewis (Parts of Classes [1991], 2.2)
     A reaction: He cites Van Inwagen for raising this question, and answers it in terms of counterparts. So is the relation internal or external? I think of sets as pairs of curly brackets, not existing entities, so the question doesn't bother me.
Maybe singletons have a structure, of a thing and a lasso? [Lewis]
     Full Idea: Maybe the singleton of something x is not an atom, but consists of x plus a lasso. That gives a singleton an internal structure. ...But what do we know of the nature of the lasso, or how it fits? We are no better off.
     From: David Lewis (Parts of Classes [1991], 2.5)
     A reaction: [second bit on p.45]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory has some unofficial axioms, generalisations about how to understand it [Lewis]
     Full Idea: Set theory has its unofficial axioms, traditional remarks about the nature of classes. They are never argued, but are passed heedlessly from one author to another. One of these says that the classes are nowhere: they are outside space and time.
     From: David Lewis (Parts of Classes [1991], 2.1)
     A reaction: Why don't the people who write formal books on set theory ever say things like this?
Set theory reduces to a mereological theory with singletons as the only atoms [Lewis, by MacBride]
     Full Idea: Lewis has shown that set theory may be reduced to a mereological theory in which singletons are the only atoms.
     From: report of David Lewis (Parts of Classes [1991]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.80
     A reaction: Presumably the axiom of extensionality, that a set is no more than its members, translates into unrestricted composition, that any parts will make an object. Difficult territory, but I suspect that this is of great importance in metaphysics.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
If singletons are where their members are, then so are all sets [Lewis]
     Full Idea: If every singleton was where its member was, then, in general, classes would be where there members were.
     From: David Lewis (Parts of Classes [1991], 2.1)
     A reaction: There seems to be a big dislocation of understanding of the nature of sets, between 'pure' set theory, and set theory with ur-elements. I take the pure to be just an 'abstraction' from the more located one. The empty set has a puzzling location.
A huge part of Reality is only accepted as existing if you have accepted set theory [Lewis]
     Full Idea: The preponderant part of Reality must consist of unfamiliar, unobserved things, whose existence would have gone unsuspected but for our acceptance of set theory.
     From: David Lewis (Parts of Classes [1991], 2.6)
     A reaction: He is referring to the enormous sets at the far end of set theory, of a size that had never been hitherto conceived. Excellent. Daft to believe in something entirely because you have accepted set theory, with no other basis.
Set theory isn't innocent; it generates infinities from a single thing; but mathematics needs it [Lewis]
     Full Idea: Set theory is not innocent. Its trouble is that when we have one thing, then somehow we have another wholly distinct thing, the singleton. And another, and another....ad infinitum. But that's the price for mathematical power. Pay it.
     From: David Lewis (Parts of Classes [1991], 3.6)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification lacks a complete axiom system [Lewis]
     Full Idea: There is an irremediable lack of a complete axiom system for plural quantification.
     From: David Lewis (Parts of Classes [1991], 4.7)
I like plural quantification, but am not convinced of its connection with second-order logic [Lewis]
     Full Idea: I agree fully with Boolos on substantive questions about plural quantification, though I would make less than he does of the connection with second-order logic.
     From: David Lewis (Parts of Classes [1991], 3.2 n2)
     A reaction: Deep matters, but my inclination is to agree with Lewis, as I have never been able to see why talk of plural quantification led straight on to second-order logic. A plural is just some objects, not some higher-order entity.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
Zermelo's model of arithmetic is distinctive because it rests on a primitive of set theory [Lewis]
     Full Idea: What sets Zermelo's modelling of arithmetic apart from von Neumann's and all the rest is that he identifies the primitive of arithmetic with an appropriately primitive notion of set theory.
     From: David Lewis (Parts of Classes [1991], 4.6)
     A reaction: Zermelo's model is just endlessly nested empty sets, which is a very simple structure. I gather that connoisseurs seem to prefer von Neumann's model (where each number contains its predecessor number).
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
Giving up classes means giving up successful mathematics because of dubious philosophy [Lewis]
     Full Idea: Renouncing classes means rejecting mathematics. That will not do. Mathematics is an established, going concern. Philosophy is as shaky as can be.
     From: David Lewis (Parts of Classes [1991], 2.8)
     A reaction: This culminates in his famous 'Who's going to tell the mathematicians? Not me!'. He has just given four examples of mathematics that seems to entirely depend on classes. This idea sounds like G.E. Moore's common sense against scepticism.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
To be a structuralist, you quantify over relations [Lewis]
     Full Idea: To be a structuralist, you quantify over relations.
     From: David Lewis (Parts of Classes [1991], 2.6)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / A. Nature of Existence / 2. Types of Existence
Existence doesn't come in degrees; once asserted, it can't then be qualified [Lewis]
     Full Idea: Existence cannot be a matter of degree. If you say there is something that exists to a diminished degree, once you've said 'there is' your game is up.
     From: David Lewis (Parts of Classes [1991], 3.5)
     A reaction: You might have thought that this was so obvious as to be not worth saying, but as far as I can see it is a minority view in contemporary philosophy. It was Quine's view, and it is mine.
7. Existence / C. Structure of Existence / 8. Stuff / a. Pure stuff
We have no idea of a third sort of thing, that isn't an individual, a class, or their mixture [Lewis]
     Full Idea: As yet we have no idea of any third sort of thing that is neither individual nor class nor mixture of the two.
     From: David Lewis (Parts of Classes [1991], 1.2)
     A reaction: You can see that Lewis was a pupil of Quine. I quote this to show how little impression 'stuff' makes on the modern radar. His defence is that stuff may not be a 'thing', but then he seems to think that 'things' exhaust reality (top p.8 and 9).
Atomless gunk is an individual whose parts all have further proper parts [Lewis]
     Full Idea: A blob can represent atomless gunk: an individual whose parts all have further proper parts.
     From: David Lewis (Parts of Classes [1991], 1.8)
     A reaction: This is not the same as 'stuff', since gunk is a precise fusion of all those parts, whereas there is no such precision about stuff. Stuff is neutral as to whether it has atoms, or is endlessly divisible. My love of stuff grows. Laycock is a hero.
8. Modes of Existence / B. Properties / 11. Properties as Sets
A property is any class of possibilia [Lewis]
     Full Idea: A property is any class of possibilia.
     From: David Lewis (Parts of Classes [1991], 2.7)
9. Objects / C. Structure of Objects / 5. Composition of an Object
The many are many and the one is one, so they can't be identical [Lewis]
     Full Idea: What is true of the many is not exactly what is true of the one. After all they are many while it is one. The number of the many is six, whereas the number of the fusion is one. The singletons of the many are distinct from the singleton of the one.
     From: David Lewis (Parts of Classes [1991], 3.6)
     A reaction: I wouldn't take this objection to be conclusive. 'Some pebbles' seem to be many, but a 'handful of pebbles' seem to be one, where the physical situation might be identical. If they are not identical, then the non-identity is purely conceptual.
Lewis affirms 'composition as identity' - that an object is no more than its parts [Lewis, by Merricks]
     Full Idea: Lewis says that the parts of a thing are identical with the whole they compose, calling his view 'composition as identity', which is the claim that a physical object is 'nothing over and above its parts'.
     From: report of David Lewis (Parts of Classes [1991], p.84-7) by Trenton Merricks - Objects and Persons §I.IV
     A reaction: The ontological economy of this view is obviously attractive, but I don't agree with it. You certainly can't say that all identity consists entirely of composition by parts, because the parts need identity to get the view off the ground.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
In mereology no two things consist of the same atoms [Lewis]
     Full Idea: It is a principle of mereology that no two things consist of exactly the same atoms.
     From: David Lewis (Parts of Classes [1991], 2.3)
     A reaction: The problem with this is screamingly obvious - that the same atoms might differ in structure. Lewis did refer to this problem, but seems to try to wriggle out of it, in Idea 15444.
Trout-turkeys exist, despite lacking cohesion, natural joints and united causal power [Lewis]
     Full Idea: A trout-turkey is inhomogeneous, disconnected, not in contrast with its surroundings. It is not cohesive, not causally integrated, not a causal unit in its impact on the rest of the world. It is not carved at the joints. That doesn't affect its existence.
     From: David Lewis (Parts of Classes [1991], 3.5)
     A reaction: A nice pre-emptive strike against all the reasons why anyone might think more is needed for unity than a mereological fusion.
Given cats, a fusion of cats adds nothing further to reality [Lewis]
     Full Idea: Given a prior commitment to cats, a commitment to cat-fusions is not a further commitment. The fusion is nothing over and above the cats that compose it. It just is them. They just are it. Together or separately, the cats are the same portion of Reality.
     From: David Lewis (Parts of Classes [1991], 3.6)
     A reaction: The two extremes of ontology are that there are no objects, or that every combination is an object. Until reading this I thought Lewis was in the second camp, but this sounds like object-nihilism, as in Van Inwagen and Merricks.
The one has different truths from the many; it is one rather than many, one rather than six [Lewis]
     Full Idea: What's true of the many is not exactly what's true of the one. After all they are many while it is one. The number of the many is six, whereas the number of the fusion is one.
     From: David Lewis (Parts of Classes [1991], 3.6)
     A reaction: Together with Idea 15521, this nicely illustrates the gulf between commitment to ontology and commitment to truths. The truths about a fusion change, while its ontology remains the same. Possibly this is the key to all of metaphysics.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Lewis only uses fusions to create unities, but fusions notoriously flatten our distinctions [Oliver/Smiley on Lewis]
     Full Idea: Lewis employs mereological fusion as his sole method of making one thing out of many, and fusion is notorious for the way it flattens out and thereby obliterates distinctions.
     From: comment on David Lewis (Parts of Classes [1991]) by Oliver,A/Smiley,T - What are Sets and What are they For? 3.1
     A reaction: I take this to be a key point in the discussion of mereology in ontological contexts. As a defender of intrinsic structural essences, I have no use for mereological fusions, and look for a quite different identity for 'wholes'.
A commitment to cat-fusions is not a further commitment; it is them and they are it [Lewis]
     Full Idea: Given a prior commitment to cats, a commitment to cat-fusions is not a further commitment. The fusion is nothing over and above the cats that compose it. It just is them. They just are it.
     From: David Lewis (Parts of Classes [1991], p.81), quoted by Achille Varzi - Mereology 4.3
     A reaction: I take this to make Lewis a nominalist, saying the same thing that Goodman said about Utah in Idea 10657. Any commitment to cat-fusions being more than the cats, or Utah being more than its counties, strikes me as crazy.
Lewis prefers giving up singletons to giving up sums [Lewis, by Fine,K]
     Full Idea: In the face of the conflict between mereology and set theory, Lewis has advocated giving up the existence of singletons rather than sums.
     From: report of David Lewis (Parts of Classes [1991]) by Kit Fine - Replies on 'Limits of Abstraction' 1
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / a. Qualities in perception
Some say qualities are parts of things - as repeatable universals, or as particulars [Lewis]
     Full Idea: Some philosophers propose that things have their qualities by having them as parts, either as repeatable universals (Goodman), or as particulars (Donald Williams).
     From: David Lewis (Parts of Classes [1991], 2.1 n2)
     A reaction: He refers to 'qualities' rather than 'properties', presumably because this view makes them all intrinsic to the object. Is being 'handsome' a part of a person?
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
24. Political Theory / D. Ideologies / 8. Socialism
The great interest of the human race is cordial unity and unlimited mutual aid [Owen]
     Full Idea: It is the one great and universal interest of the human race to be cordially united, and to aid each other to the full extent of their capacities.
     From: Robert Owen (works [1830]), quoted by John H. Muirhead - The Service of the State IV
     A reaction: [Inscribed on his tomb in Newport, Shropshire] In the middle of the early industrial revolution, Owen worked hard for the rights of the people who worked in his factory.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.