Combining Texts

All the ideas for 'works', 'reports of last days' and 'The Concept of Truth for Formalized Languages'

unexpand these ideas     |    start again     |     specify just one area for these texts


87 ideas

1. Philosophy / D. Nature of Philosophy / 2. Invocation to Philosophy
The unexamined life is not worth living for men [Socrates]
     Full Idea: The unexamined life is not worth living for men.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - The Apology 38a
     A reaction: I wonder why? I can see Nietzsche offering aristocratic heroes and dancers as counterexamples. Compare Idea 3798.
3. Truth / A. Truth Problems / 2. Defining Truth
Tarski proved that truth cannot be defined from within a given theory [Tarski, by Halbach]
     Full Idea: Tarski's Theorem states that under fairly generally applicable conditions, the assumption that there is a definition of truth within a given theory for the language of that same theory leads to a contradiction.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 1
     A reaction: That might leave room for a definition outside the given theory. I take the main motivation for the axiomatic approach to be a desire to get a theory of truth within the given theory, where Tarski's Theorem says traditional approaches are just wrong.
Tarski proved that any reasonably expressive language suffers from the liar paradox [Tarski, by Horsten]
     Full Idea: Tarski's Theorem on the undefinability of truth says in a language sufficiently rich to talk about itself (which Gödel proved possible, via coding) the liar paradox can be carried out.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 02.2
     A reaction: The point is that truth is formally indefinable if it leads inescapably to contradiction, which the liar paradox does. This theorem is the motivation for all modern attempts to give a rigorous account of truth.
'True sentence' has no use consistent with logic and ordinary language, so definition seems hopeless [Tarski]
     Full Idea: The possibility of a consistent use of 'true sentence' which is in harmony with the laws of logic and the spirit of everyday language seems to be very questionable, so the same doubt attaches to the possibility of constructing a correct definition.
     From: Alfred Tarski (The Concept of Truth for Formalized Languages [1933], §1)
     A reaction: This is often cited as Tarski having conclusively proved that 'true' cannot be defined from within a language, but his language here is much more circumspect. Modern critics say the claim depends entirely on classical logic.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Tarski's Theorem renders any precise version of correspondence impossible [Tarski, by Halbach]
     Full Idea: Tarski's Theorem applies to any sufficient precise version of the correspondence theory of truth, and all the other traditional theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 1
     A reaction: This is the key reason why modern thinkers have largely dropped talk of the correspondence theory. See Idea 16295.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarski gave up on the essence of truth, and asked how truth is used, or how it functions [Tarski, by Horsten]
     Full Idea: Tarski emancipated truth theory from traditional philosophy, by no longer posing Pilate's question (what is truth? or what is the essence of truth?) but instead 'how is truth used?', 'how does truth function?' and 'how can its functioning be described?'.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 02.2
     A reaction: Horsten, later in the book, does not give up on the essence of truth, and modern theorists are trying to get back to that question by following Tarski's formal route. Modern analytic philosophy at its best, it seems to me.
Tarski did not just aim at a definition; he also offered an adequacy criterion for any truth definition [Tarski, by Halbach]
     Full Idea: Tarski did not settle for a definition of truth, taking its adequacy for granted. Rather he proposed an adequacy criterion for evaluating the adequacy of definitions of truth. The criterion is his famous Convention T.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
     A reaction: Convention T famously says the sentence is true if and only if a description of the sentence is equivalent to affirming the sentence. 'Snow is white' iff snow is white.
Tarski enumerates cases of truth, so it can't be applied to new words or languages [Davidson on Tarski]
     Full Idea: Tarski does not tell us how to apply his concept of truth to a new case, whether the new case is a new language or a word newly added to a language. This is because enumerating cases gives no clue for the next or general case.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: His account has been compared to a telephone directory. We aim to understand the essence of anything, so that we can fully know it, and explain and predict how it will behave. Either truth is primitive, or I demand to know its essence.
Tarski define truths by giving the extension of the predicate, rather than the meaning [Davidson on Tarski]
     Full Idea: Tarski defined the class of true sentences by giving the extension of the truth predicate, but he did not give the meaning.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: This is analogous to giving an account of the predicate 'red' as the set of red objects. Since I regard that as a hopeless definition of 'red', I am inclined to think the same of Tarski's account of truth. It works in the logic, but so what?
Tarski made truth relative, by only defining truth within some given artificial language [Tarski, by O'Grady]
     Full Idea: Tarski's account doesn't hold for natural languages. The general notion of truth is replaced by "true-in-L", where L is a formal language. Hence truth is relativized to each artificial language.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Paul O'Grady - Relativism Ch.2
     A reaction: This is a pretty good indication that Tarski's theory is NOT a correspondence theory, even if its structure may sometimes give that impression.
Tarski has to avoid stating how truths relate to states of affairs [Kirkham on Tarski]
     Full Idea: Tarski has to define truths so as not to make explicit the relation between a true sentence and an obtaining state of affairs. ...He has to list each sentence separately, and simply assign it a state of affairs.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.8
     A reaction: He has to avoid semantic concepts like 'reference', because he wants a physicalist theory, according to Kirkham. Thus the hot interest in theories of reference in the 1970s/80s. And also attempts to give a physicalist account of meaning.
Tarskian semantics says that a sentence is true iff it is satisfied by every sequence [Tarski, by Hossack]
     Full Idea: Tarskian semantics says that a sentence is true iff it is satisfied by every sequence, where a sequence is a set-theoretic individual, a set of ordered pairs each with a natural number as its first element and an object from the domain for its second.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Keith Hossack - Plurals and Complexes 3
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth only applies to closed formulas, but we need satisfaction of open formulas to define it [Burgess on Tarski]
     Full Idea: In Tarski's theory of truth, although the notion of truth is applicable only to closed formulas, to define it we must define a more general notion of satisfaction applicable to open formulas.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by John P. Burgess - Philosophical Logic 1.8
     A reaction: This is a helpful pointer to what is going on in the Tarski definition. It culminates in the 'satisfaction of all sequences', which presumable delivers the required closed formula.
Tarski uses sentential functions; truly assigning the objects to variables is what satisfies them [Tarski, by Rumfitt]
     Full Idea: Tarski invoked the notion of a sentential function, where components are replaced by appropriate variables. A function is then satisfied by assigning objects to variables. An assignment satisfies if the function is true of the things assigned.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Ian Rumfitt - The Boundary Stones of Thought 3.2
     A reaction: [very compressed] This use of sentential functions, rather than sentences, looks like the key to Tarski's definition of truth.
We can define the truth predicate using 'true of' (satisfaction) for variables and some objects [Tarski, by Horsten]
     Full Idea: The truth predicate, says Tarski, should be defined in terms of the more primitive satisfaction relation: the relation of being 'true of'. The fundamental notion is a formula (containing the free variables) being true of a sequence of objects as values.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 06.3
For physicalism, reduce truth to satisfaction, then define satisfaction as physical-plus-logic [Tarski, by Kirkham]
     Full Idea: Tarski, a physicalist, reduced semantics to physical and/or logicomathematical concepts. He defined all semantic concepts, save satisfaction, in terms of truth. Then truth is defined in terms of satisfaction, and satisfaction is given non-semantically.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.1
     A reaction: The term 'logicomathematical' is intended to cover set theory. Kirkham says you can remove these restrictions from Tarski's theory, and the result is a version of the correspondence theory.
Insight: don't use truth, use a property which can be compositional in complex quantified sentence [Tarski, by Kirkham]
     Full Idea: Tarski's great insight is find another property, since open sentences are not truth. It must be had by open and genuine sentences. Clauses having it must generate it for the whole sentence. Truth can be defined for sentences by using it.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.4
     A reaction: The proposed property is 'satisfaction', which can (unlike truth) be a feature open sentences (such as 'x is green', which is satisfied by x='grass'),
Tarski gave axioms for satisfaction, then derived its explicit definition, which led to defining truth [Tarski, by Davidson]
     Full Idea: Tarski turned his axiomatic characterisation of satisfaction into an explicit definition of the satisfaction-predicate using some fancy set theoretical apparatus, and this in turn leads to the explicit definition of the truth predicate.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 7
3. Truth / F. Semantic Truth / 2. Semantic Truth
Tarski had a theory of truth, and a theory of theories of truth [Tarski, by Read]
     Full Idea: Besides a theory of truth of his own, Tarski developed a theory of theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Stephen Read - Thinking About Logic Ch.1
     A reaction: The famous snow biconditional is the latter, and the recursive account based on satisfaction is the former.
Tarski's 'truth' is a precise relation between the language and its semantics [Tarski, by Walicki]
     Full Idea: Tarski's analysis of the concept of 'truth' ...is given a precise treatment as a particular relation between syntax (language) and semantics (the world).
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Michal Walicki - Introduction to Mathematical Logic History E.1
     A reaction: My problem is that the concept of truth seems to apply to animal minds, which are capable of making right or wrong judgements, and of realising their errors. Tarski didn't make universal claims for his account.
Tarskian truth neglects the atomic sentences [Mulligan/Simons/Smith on Tarski]
     Full Idea: The Tarskian account of truth neglects the atomic sentences.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Mulligan/Simons/Smith - Truth-makers §1
     A reaction: Yes! The whole Tarskian edifice is built on a foundation which it is taboo even to mention. If truth is just the assignment of 'T' and 'F', that isn't even the beginnings of a theory of 'truth'.
Tarski says that his semantic theory of truth is completely neutral about all metaphysics [Tarski, by Haack]
     Full Idea: Tarski says "we may remain naïve realists or idealists, empiricists or metaphysicians… The semantic conception is completely neutral toward all these issues."
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Susan Haack - Philosophy of Logics 7.5
Physicalists should explain reference nonsemantically, rather than getting rid of it [Tarski, by Field,H]
     Full Idea: Tarski work was to persuade physicalist that eliminating semantics was on the wrong track, and that we should explicate notions in the theory of reference nonsemantically rather than simply get rid of them.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Hartry Field - Tarski's Theory of Truth §3
A physicalist account must add primitive reference to Tarski's theory [Field,H on Tarski]
     Full Idea: We need to add theories of primitive reference to Tarski's account if we are to establish the notion of truth as a physicalistically acceptable notion.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Hartry Field - Tarski's Theory of Truth §4
     A reaction: This is the main point of Field's paper, and sounds very plausible to me. There is something major missing from Tarski, and at some point there needs to be a 'primitive' notion of thought and language making contact with the world, as it can't be proved.
Tarski defined truth for particular languages, but didn't define it across languages [Davidson on Tarski]
     Full Idea: Tarski defined various predicates of the form 's is true in L', each applicable to a single language, but he failed to define a predicate of the form 's is true in L' for variable 'L'.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: You might say that no one defines 'tree' to be just 'in English', but we might define 'multiplies' to be in Peano Arithmetic. This indicates the limited and formal nature of what Tarski was trying to achieve.
Tarski made truth respectable, by proving that it could be defined [Tarski, by Halbach]
     Full Idea: Tarski's proof of the definability of truth allowed him to establish truth as a respectable notion by his standards.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
Tarski didn't capture the notion of an adequate truth definition, as Convention T won't prove non-contradiction [Halbach on Tarski]
     Full Idea: Every really adequate theory of truth should also prove the law of non-contradiction. Therefore Tarski's notion of adequacy in Convention T fails to capture the intuitive notion of adequacy he is after.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
     A reaction: Tarski points out this weakness, in a passage quoted by Halbach. This obviously raises the question of what truth theories should prove, and this is explored by Halbach. If they start to prove arithmetic, we get nervous. Non-contradiction and x-middle?
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Tarski's had the first axiomatic theory of truth that was minimally adequate [Tarski, by Horsten]
     Full Idea: Tarski's work is the earliest axiomatic theory of truth that meets minimal adequacy conditions.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 01.1
     A reaction: This shows a way in which Tarski gave a new direction to the study of truth. Subsequent theories have been 'stronger'.
Tarski defined truth, but an axiomatisation can be extracted from his inductive clauses [Tarski, by Halbach]
     Full Idea: Tarski preferred a definition of truth, but from that an axiomatisation can be extracted. His induction clauses can be turned into axioms. Hence he opened the way to axiomatic theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is invariant under arbitrary permutations, so it seems to be a logical term [Tarski, by McGee]
     Full Idea: Tarski showed that the only binary relations invariant under arbitrary permutations are the universal relation, the empty relation, identity and non-identity, thus giving us a reason to include '=' among the logical terms.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Vann McGee - Logical Consequence 6
     A reaction: Tarski was looking for a criterion to distinguish logical from non-logical terms, since his account of logical validity depended on it. This idea lies behind whether a logic is or is not specified to be 'with identity' (i.e. using '=').
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
A name denotes an object if the object satisfies a particular sentential function [Tarski]
     Full Idea: To say that the name x denotes a given object a is the same as to stipulate that the object a ... satisfies a sentential function of a particular type.
     From: Alfred Tarski (The Concept of Truth for Formalized Languages [1933], p.194)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Tarski built a compositional semantics for predicate logic, from dependent satisfactions [Tarski, by McGee]
     Full Idea: Tarski discovered how to give a compositional semantics for predicate calculus, defining truth in terms of satisfaction, and showing how satisfaction for a complicated formula depends on satisfaction of the simple subformulas.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Vann McGee - Logical Consequence 4
     A reaction: The problem was that the subformulas may contain free variables, and thus not be sentences with truth values. 'Satisfaction' can handle this, where 'truth' cannot (I think).
Tarksi invented the first semantics for predicate logic, using this conception of truth [Tarski, by Kirkham]
     Full Idea: Tarski invented a formal semantics for quantified predicate logic, the logic of reasoning about mathematics. The heart of this great accomplishment is his theory of truth. It has been called semantic 'theory' of truth, but Tarski preferred 'conception'.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.1
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
     Full Idea: Tarski's distinction between object and metalanguage forms the basis of model theory.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 11
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Tarski avoids the Liar Paradox, because truth cannot be asserted within the object language [Tarski, by Fisher]
     Full Idea: In Tarski's account of truth, self-reference (as found in the Liar Paradox) is prevented because the truth predicate for any given object language is never a part of that object language, and so a sentence can never predicate truth of itself.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Jennifer Fisher - On the Philosophy of Logic 03.I
     A reaction: Thus we solve the Liar Paradox by ruling that 'you are not allowed to say that'. Hm. The slightly odd result is that in any conversation about whether p is true, we end up using (logically speaking) two different languages simultaneously. Hm.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
     Full Idea: Tarski's theory of truth has been most influential in eventually creating a shift from the entirely syntactic way of doing things in metamathematics (promoted by Hilbert in the 1920s, in his theory of proofs), towards a set-theoretical, semantic approach.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Feferman / Feferman - Alfred Tarski: life and logic Int III
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
21. Aesthetics / A. Aesthetic Experience / 3. Taste
Taste is the capacity to judge an object or representation which is thought to be beautiful [Tarski, by Schellekens]
     Full Idea: Taste is the faculty for judging an object or a kind of representation through a satisfaction or a dissatisfaction, ...where the object of such a satisfaction is called beautiful.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Elizabeth Schellekens - Immanuel Kant (aesthetics) 1
     A reaction: We usually avoid the word 'faculty' nowadays, because it implies a specific mechanism, but 'capacity' will do. Kant is said to focus specifically on beauty, whereas modern aestheticians have a broader view of the type of subject matter.
22. Metaethics / B. Value / 2. Values / e. Death
Men fear death as a great evil when it may be a great blessing [Socrates]
     Full Idea: No one knows whether death may not be the greatest of all blessings for a man, yet men fear it as if they knew that it is the greatest of evils.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - The Apology 29a
     A reaction: As a neutral observer, I see little sign of it being a blessing, except as a relief from misery. It seem wrong to view such a natural thing as evil, but it is the thing most of us least desire.
If death is like a night of dreamless sleep, such nights are very pleasant [Socrates]
     Full Idea: If death is like a night of dreamless sleep it is an advantage, for such nights are very pleasant, and eternity would seem like a single night.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - The Apology 40d
     A reaction: Dreamless sleep is only pleasant if being awake is unpleasant. Very quiet days are only pleasant if the active days are horrible. A desire for a totally quiet life is absurd.
23. Ethics / B. Contract Ethics / 8. Contract Strategies
We should not even harm someone who harms us [Socrates]
     Full Idea: One should never return an injustice nor harm another human being no matter what one suffers at their hands.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - Crito 49c
     A reaction: Jesus of Nazareth was not the first person to make this suggestion.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / c. Motivation for virtue
A good man cannot be harmed, either in life or in death [Socrates]
     Full Idea: A good man cannot be harmed, either in life or in death.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - The Apology 41d
23. Ethics / C. Virtue Theory / 3. Virtues / c. Justice
One ought not to return a wrong or injury to any person, whatever the provocation [Socrates]
     Full Idea: One ought not to return a wrong or an injury to any person, whatever the provocation is.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - Crito 49b
     A reaction: The same as the essential moral teachings of Jesus (see Idea 6288) and Lao Tzu (Idea 6324). The big target is not to be corrupted by the evil of other people.
23. Ethics / C. Virtue Theory / 4. External Goods / c. Wealth
Wealth is good if it is accompanied by virtue [Socrates]
     Full Idea: Wealth does not bring about excellence, but excellence makes wealth and everything else good for men.
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - The Apology 30b
25. Social Practice / D. Justice / 2. The Law / a. Legal system
Will I stand up against the law, simply because I have been unjustly judged? [Socrates]
     Full Idea: Do I intend to destroy the laws, because the state wronged me by passing a faulty judgement at my trial?
     From: Socrates (reports of last days [c.399 BCE]), quoted by Plato - Crito 50c
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.
28. God / C. Attitudes to God / 5. Atheism
Socrates is accused of denying the gods, saying sun is stone and moon is earth [Socrates, by Plato]
     Full Idea: Socrates denies the gods, because he says the sun is stone and the moon is earth.
     From: report of Socrates (reports of last days [c.399 BCE]) by Plato - The Apology 26d