Combining Texts

All the ideas for 'The Intrinsic Quality of Experience', 'Infinity: Quest to Think the Unthinkable' and 'On Second-Order Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
     Full Idea: Set theory made a closer study of infinity possible.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Any set can always generate a larger set - its powerset, of subsets [Clegg]
     Full Idea: The idea of the 'power set' means that it is always possible to generate a bigger one using only the elements of that set, namely the set of all its subsets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
     Full Idea: Axiom of Extension: Two sets are equal if and only if they have the same elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
     Full Idea: Axiom of Pairing: For any two sets there exists a set to which they both belong. So you can make a set out of two other sets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
     Full Idea: Axiom of Unions: For every collection of sets there exists a set that contains all the elements that belong to at least one of the sets in the collection.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
     Full Idea: Axiom of Powers: For each set there exists a collection of sets that contains amongst its elements all the subsets of the given set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: Obviously this must include the whole of the base set (i.e. not just 'proper' subsets), otherwise the new set would just be a duplicate of the base set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
     Full Idea: Axiom of Existence: there exists at least one set. This may be the empty set, but you need to start with something.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
     Full Idea: Axiom of Specification: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true. So the concept 'number is even' produces a set from the integers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: What if the condition won't apply to the set? 'Number is even' presumably won't produce a set if it is applied to a set of non-numbers.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
     Full Idea: Boolos's conception of plural logic is as a reinterpretation of second-order logic.
     From: report of George Boolos (On Second-Order Logic [1975]) by Oliver,A/Smiley,T - What are Sets and What are they For? n5
     A reaction: Oliver and Smiley don't accept this view, and champion plural reference differently (as, I think, some kind of metalinguistic device?).
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
     Full Idea: The metatheory of second-order logic is hopelessly set-theoretic, and the notion of second-order validity possesses many if not all of the epistemic debilities of the notion of set-theoretic truth.
     From: George Boolos (On Second-Order Logic [1975], p.45)
     A reaction: Epistemic problems arise when a logic is incomplete, because some of the so-called truths cannot be proved, and hence may be unreachable. This idea indicates Boolos's motivation for developing a theory of plural quantification.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
     Full Idea: One may be of the opinion that no sentence ought to be considered as a truth of logic if, no matter how it is interpreted, it asserts that there are sets of certain sorts.
     From: George Boolos (On Second-Order Logic [1975], p.44)
     A reaction: My intuition is that in no way should any proper logic assert the existence of anything at all. Presumably interpretations can assert the existence of numbers or sets, but we should be able to identify something which is 'pure' logic. Natural deduction?
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
     Full Idea: One may say that '∀x x=x' means 'everything is identical to itself', but one must realise that one's answer has a determinate sense only if the reference (range) of 'everything' is fixed.
     From: George Boolos (On Second-Order Logic [1975], p.46)
     A reaction: This is the problem now discussed in the recent book 'Absolute Generality', of whether one can quantify without specifying a fixed or limited domain.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
     Full Idea: A weak completeness theorem shows that a sentence is provable whenever it is valid; a strong theorem, that a sentence is provable from a set of sentences whenever it is a logical consequence of the set.
     From: George Boolos (On Second-Order Logic [1975], p.52)
     A reaction: So the weak version says |- φ → |= φ, and the strong versions says Γ |- φ → Γ |= φ. Presumably it is stronger if it can specify the source of the inference.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
     Full Idea: Boolos asks why on earth compactness, whatever its virtues, should be definitive of logic itself.
     From: report of George Boolos (On Second-Order Logic [1975]) by Ian Hacking - What is Logic? §13
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
     Full Idea: Three views of mathematics: 'pure' mathematics, where it doesn't matter if it could ever have any application; 'real' mathematics, where every concept must be physically grounded; and 'applied' mathematics, using the non-real if the results are real.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.17)
     A reaction: Very helpful. No one can deny the activities of 'pure' mathematics, but I think it is undeniable that the origins of the subject are 'real' (rather than platonic). We do economics by pretending there are concepts like the 'average family'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
     Full Idea: The realisation that brought 'i' into the toolkit of physicists and engineers was that you could extend the 'number line' into a new dimension, with an imaginary number axis at right angles to it. ...We now have a 'number plane'.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.12)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
     Full Idea: It is a chicken-and-egg problem, whether the lack of zero forced forced classical mathematicians to rely mostly on a geometric approach to mathematics, or the geometric approach made 0 a meaningless concept, but the two remain strongly tied together.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
     Full Idea: As far as Kronecker was concerned, Cantor had built a whole structure on the irrational numbers, and so that structure had no foundation at all.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
     Full Idea: The notions of infinity and countability can be characterized by second-order sentences, though not by first-order sentences (as compactness and Skolem-Löwenheim theorems show), .. as well as well-ordering, progression, ancestral and identity.
     From: George Boolos (On Second-Order Logic [1975], p.48)
15. Nature of Minds / B. Features of Minds / 5. Qualia / b. Qualia and intentionality
Qualities of experience are just representational aspects of experience ('Representationalism') [Harman, by Burge]
     Full Idea: Harman defended what came to be known as 'representationalism' - the view that qualitative aspects of experience are nothing other than representational aspects.
     From: report of Gilbert Harman (The Intrinsic Quality of Experience [1990]) by Tyler Burge - Philosophy of Mind: 1950-2000 p.459
     A reaction: Functionalists like Harman have a fairly intractable problem with the qualities of experience, and this may be clutching at straws. What does 'represent' mean? How is the representation achieved? Why that particular quale?