Combining Texts

All the ideas for 'Are there propositions?', 'Reality is Not What it Seems' and 'System of Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


78 ideas

3. Truth / C. Correspondence Truth / 2. Correspondence to Facts
A true proposition seems true of one fact, but a false proposition seems true of nothing at all. [Ryle]
     Full Idea: Whereas there might be just one fact that a true proposition was like, we would have to say that a false proposition was unlike any fact. We could not speak of the fact that it was false of, so we could not speak of its being false of anything at all.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: Ryle brings out very nicely the point Russell emphasised so much, that the most illuminating studies in philosophy are of how falsehood works, rather than of how truths work. If I say 'the Queen is really a man' it is obvious what that is false of.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Two maps might correspond to one another, but they are only 'true' of the country they show [Ryle]
     Full Idea: One map of Sussex is like another, but it is not true of that other map, but only of the county.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: One might question whether a map is in any sense 'true' of Sussex, though one must admit that there are good and bad maps of Sussex. The point is a nice one, which shows that there is no simple account of truth as correspondence.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
What physical facts could underlie 0 or 1, or very large numbers? [Frege on Mill]
     Full Idea: What in the world can be the observed fact, or the physical fact, which is asserted in the definition of the number 777864? ...What a pity that Mill did not also illustrate the physical facts underlying the numbers 0 and 1!
     From: comment on John Stuart Mill (System of Logic [1843]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §7
     A reaction: I still think patterns could be an empirical foundation for arithmetic, though you still have to grasp the abstract concept of the pattern. An innate capacity to spot resemblance gets you a long way.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic studies consequence, compatibility, contradiction, corroboration, necessitation, grounding.... [Ryle]
     Full Idea: Logic studies the way in which one thing follows from another, in which one thing is compatible with another, contradicts, corroborates or necessitates another, is a special case of another or the nerve of another. And so on.
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: I presume that 'and so on' would include how one thing proves another. This is quite a nice list, which makes me think a little more widely about the nature of logic (rather than just about inference). Incompatibility isn't a process.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
Combining two distinct assertions does not necessarily lead to a single 'complex proposition' [Mill]
     Full Idea: In 'Caesar is dead, and Brutus is alive' ...there are here two distinct assertions; and we might as well call a street a complex house, as these two propositions a complex proposition.
     From: John Stuart Mill (System of Logic [1843], 1.04.3)
     A reaction: Arthur Prior, in his article on 'tonk', cites this to claim that the mere account of the and-introduction rule does not guarantee the existence of any conjunctive proposition that can result from it. Mill says you are adding a third proposition.
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
All names are names of something, real or imaginary [Mill]
     Full Idea: All names are names of something, real or imaginary.
     From: John Stuart Mill (System of Logic [1843], p.32), quoted by Mark Sainsbury - The Essence of Reference 18.2
     A reaction: Mill's example of of being like a chalk mark on a door, but Sainsbury points out that names can be detached from bearers in a way that chalk marks can't.
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
Mill says names have denotation but not connotation [Mill, by Kripke]
     Full Idea: It is a well known doctrine of Mill that names have denotation but not connotation.
     From: report of John Stuart Mill (System of Logic [1843]) by Saul A. Kripke - Naming and Necessity lectures Lecture 1
     A reaction: A nice starting point for any discussion of the topic. The obvious response is that a name like 'Attila the Hun' seems to have a very vague denotation for most of us, but a rather powerful connotation.
Proper names are just labels for persons or objects, and the meaning is the object [Mill, by Lycan]
     Full Idea: Mill seemed to defend the view that proper names are merely labels for individual persons or objects, and contribute no more than those individuals themselves to the meanings of sentences in which they occur.
     From: report of John Stuart Mill (System of Logic [1843]) by William Lycan - Philosophy of Language
     A reaction: Identity statements can become trivial on this view ('Twain is Clemens'). Modern views have become more sympathetic to Mill, since externalism places meanings outside the head of the speaker.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Zeno assumes collecting an infinity of things makes an infinite thing [Rovelli]
     Full Idea: One possible answer is that Zeno is wrong because it is not true that by accumulating an infinite number of things one ends up with an infinite thing.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 01)
     A reaction: I do love it when deep and complex ideas are expressed with perfect simplicity. As long as the simple version is correct.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Numbers must be assumed to have identical units, as horses are equalised in 'horse-power' [Mill]
     Full Idea: There is one hypothetical element in the basis of arithmetic, without which none of it would be true: all the numbers are numbers of the same or of equal units. When we talk of forty horse-power, we assume all horses are of equal strength.
     From: John Stuart Mill (System of Logic [1843], 2.6.3)
     A reaction: Of course, horses are not all of equal strength, so there is a problem here for your hard-line empiricist. Mill needs processes of idealisation and abstraction before his empirical arithmetic can get off the ground.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The only axioms needed are for equality, addition, and successive numbers [Mill, by Shapiro]
     Full Idea: Mill says arithmetic has two axioms, that 'things which are equal to the same thing are equal to each other', and 'equals added to equals make equal sums', plus a definition for each numeral as 'formed by the addition of a unit to the previous number'.
     From: report of John Stuart Mill (System of Logic [1843], p.610?) by Stewart Shapiro - Thinking About Mathematics 4.3
     A reaction: The difficulty here seems to be the definition of 1, and (even worse for an empiricist), of 0. Then he may have a little trouble when he reaches infinity.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Arithmetic is based on definitions, and Sums of equals are equal, and Differences of equals are equal [Mill]
     Full Idea: The inductions of arithmetic are based on so-called definitions (such as '2 and 1 are three'), and on two axioms: The sums of equals are equal, The differences of equals are equal.
     From: John Stuart Mill (System of Logic [1843], 2.6.3)
     A reaction: These are axioms for arithmetical operations, rather than for numbers themselves (which, for Mill, do not require axioms as they are empirically derived).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mill says logic and maths is induction based on a very large number of instances [Mill, by Ayer]
     Full Idea: Mill maintained that the truths of logic and mathematics are not necessary or certain, by saying these propositions are inductive generalisations based on an extremely large number of instances.
     From: report of John Stuart Mill (System of Logic [1843]) by A.J. Ayer - Language,Truth and Logic Ch.4
     A reaction: Ayer asserts that they are necessary (but only because they are tautological). I like the idea that maths is the 'science of patterns', but that might lead from an empirical start to a rationalist belief in a priori synthetic truths.
If two black and two white objects in practice produced five, what colour is the fifth one? [Lewis,CI on Mill]
     Full Idea: If Mill has a demon who, every time two things are brought together with two other things, always introduces a fifth, then if two black marbles and two white ones are put in an urn, the demon could choose his color, but there would be more of one colour.
     From: comment on John Stuart Mill (System of Logic [1843]) by C.I. Lewis - A Pragmatic Conception of the A Priori p.367
     A reaction: Nice to see philosophers fighting back against demons. This is a lovely argument against the absurdity of thinking that experience could ever controvert a priori knowledge (though Lewis is no great fan of the latter).
Mill mistakes particular applications as integral to arithmetic, instead of general patterns [Dummett on Mill]
     Full Idea: Mill's mistake is taking particular applications as integral to the sense of arithmetical propositions. But what is integral to arithmetic is the general principle that explains its applicability, and determines the pattern of particular applications.
     From: comment on John Stuart Mill (System of Logic [1843], 2.6) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: [Dummett is summarising Frege's view] Sounds like a tidy objection, but you still have to connect the general principles and patterns to the physical world. 'Structure' could be the magic word to achieve this.
There are no such things as numbers in the abstract [Mill]
     Full Idea: There are no such things as numbers in the abstract.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Depends. Would we want to say that 'horses don't exist' (although each individual horse does exist)? It sounds odd to say of an idea that it doesn't exist, when you are currently thinking about it. I am, however, sympathetic to Mill.
Things possess the properties of numbers, as quantity, and as countable parts [Mill]
     Full Idea: All things possess quantity; consist of parts which can be numbered; and in that character possess all the properties which are called properties of numbers.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Here Mill is skating on the very thinnest of ice, and I find myself reluctantly siding with Frege. It is a very optimistic empiricist who hopes to find the numbers actually occurring as properties of experienced objects. A pack of cards, for example.
Numbers have generalised application to entities (such as bodies or sounds) [Mill]
     Full Idea: 'Ten' must mean ten bodies, or ten sounds, or ten beatings of the pulse. But though numbers must be numbers of something, they may be numbers of anything.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Mill always prefers things in close proximity, in space or time. 'I've had ten headaches in the last year'. 'There are ten reasons for doubting p'. His second point puts him very close to Aristotle in his view.
Different parcels made from three pebbles produce different actual sensations [Mill]
     Full Idea: Three pebbles make different sense impressions in one parcel or in two. That the same pebbles by an alteration of place and arrangement may be made to produce either sensation is not the identical proposition.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: [compressed] Not quite clear, but Mill seems to be adamant that we really must experience the separation, and not just think what 'may' happen, so Frege is right that Mill is lucky that everything is not 'nailed down'.
'2 pebbles and 1 pebble' and '3 pebbles' name the same aggregation, but different facts [Mill]
     Full Idea: The expressions '2 pebbles and 1 pebble' and '3 pebbles' stand for the same aggregation of objects, but do not stand for the same physical fact. They name the same objects in different states, 'denoting' the same things, with different 'connotations'.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Nothing in this would convert me from the analytic view to the empirical view of simple arithmetic, if I were that way inclined. Personally I think of three pebbles as 4 minus 1, because I am haunted by the thought of a missing stone.
3=2+1 presupposes collections of objects ('Threes'), which may be divided thus [Mill]
     Full Idea: 'Three is two and one' presupposes that collections of objects exist, which while they impress the senses thus, ¶¶¶, may be separated into two parts, thus, ¶¶ ¶. This being granted, we term all such parcels Threes.
     From: John Stuart Mill (System of Logic [1843], 2.6.2)
     A reaction: Mill is clearly in trouble here because he sticks to simple arithmetic. He must deal with parcels too big for humans to count, and parcels so big that they could not naturally exist, and that is before you even reach infinite parcels.
Numbers denote physical properties of physical phenomena [Mill]
     Full Idea: The fact asserted in the definition of a number is a physical fact. Each of the numbers two, three, four denotes physical phenomena, and connotes a physical property of those phenomena. Two denotes all pairs of things, and twelve all dozens.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: The least plausible part of Mill's thesis. Is the fact that a pair of things is fewer than five things also a property? You see two boots, or you see a pair of boots, depending partly on you. Is pure two a visible property? Courage and an onion?
We can't easily distinguish 102 horses from 103, but we could arrange them to make it obvious [Mill]
     Full Idea: 102 horses are not as easily distinguished from 103 as two are from three, yet the horses may be so placed that a difference will be perceptible.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: More trouble for Mill. We are now moving from the claim that we actually perceive numbers to the claim that we could if we arranged things right. But we would still only see which group of horses was bigger by one, not how many horses there were.
Arithmetical results give a mode of formation of a given number [Mill]
     Full Idea: Every statement of the result of an arithmetical operation is a statement of one of the modes of formation of a given number.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: Although Mill sticks cautiously to very simple arithmetic, inviting empirical accounts of much higher mathematics, I think the phrase 'modes of formation' of numbers is very helpful. It could take us either into structuralism, or into constructivism.
12 is the cube of 1728 means pebbles can be aggregated a certain way [Mill]
     Full Idea: When we say 12 is the cube of 1728, we affirm that if we had sufficient pebbles, we put them into parcels or aggregates called twelves, and put those twelves into similar collections, and make twelve of these largests parcels, we have the aggregate 1728.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: There is always hidden modal thinking in Mill's proposals, despite his longing to stick to actual experience. Imagination actually plays a much bigger role in his theory than sense experience does.
Numbers must be of something; they don't exist as abstractions [Mill]
     Full Idea: All numbers must be numbers of something: there are no such things as numbers in the abstract.
     From: John Stuart Mill (System of Logic [1843], p.245?), quoted by Stewart Shapiro - Thinking About Mathematics 4.3
     A reaction: This shows why the concept of 'abstraction' is such a deep problem. Numbers can't be properties of objects, because two boots can become one boot without changing the surviving boot. But why should abstractions have to 'exist'?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Mill is too imprecise, and is restricted to simple arithmetic [Kitcher on Mill]
     Full Idea: The problem with Mill is that many of his formulations are imprecise, and he only considers the most rudimentary parts of arithmetic.
     From: comment on John Stuart Mill (System of Logic [1843]) by Philip Kitcher - The Nature of Mathematical Knowledge Intro
     A reaction: This is from a fan of Mill, trying to restore his approach in the face of the authoritative and crushing criticisms offered by Frege. I too am a fan of Mill's approach. Patterns can be discerned in arrangements of pebbles. Infinities are a problem.
Empirical theories of arithmetic ignore zero, limit our maths, and need probability to get started [Frege on Mill]
     Full Idea: Mill does not give us a clue as to how to understand the number zero, he limits our mathematical knowledge to the limits of our experience, ..and induction can only give you probability, but that presupposes arithmetical laws.
     From: comment on John Stuart Mill (System of Logic [1843]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations)
     A reaction: This summarises Frege's criticisms of Mill's empirical account of maths. I like 'maths is the science of patterns', in which case zero is just a late-introduced trick (it is hardly a Platonic Form!), and induction is the wrong account to give.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Numbers are a very general property of objects [Mill, by Brown,JR]
     Full Idea: Mill held that numbers are a kind of very general property that objects possess.
     From: report of John Stuart Mill (System of Logic [1843], Ch.4) by James Robert Brown - Philosophy of Mathematics
     A reaction: Intuitively this sounds hopeless, because if you place one apple next to another you introduce 'two', but which apple has changed its property? Both? It seems to be a Cambridge change. It isn't a change that would bother the apples. Kitcher pursues this.
7. Existence / B. Change in Existence / 2. Processes
Quantum mechanics deals with processes, rather than with things [Rovelli]
     Full Idea: Quantum mechanics teaches us not to think about the world in terms of 'things' which are in this or that state, but in terms of 'processes' instead.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
7. Existence / B. Change in Existence / 4. Events / b. Events as primitive
Quantum mechanics describes the world entirely as events [Rovelli]
     Full Idea: The world of quantum mechanics is not a world of objects: it is a world of events.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: I presume a philosopher is allowed to ask what an 'event' is. Since, as Rovelli tells it, time is eliminated from the picture, events seem to be unanalysable primitives.
7. Existence / D. Theories of Reality / 8. Facts / c. Facts and truths
Many sentences do not state facts, but there are no facts which could not be stated [Ryle]
     Full Idea: There are many sentences which do not state facts, while there are no facts which (in principle) could not be stated.
     From: Gilbert Ryle (Are there propositions? [1930], 'Substitute')
     A reaction: Hm. This seems like a nice challenge. The first problem would be infinite facts. Then complex universal facts, beyond the cognizance of any mind. Then facts that change faster than thinking can change. Do you give up yet? Then there's....
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Whatever is made up of parts is made up of parts of those parts [Mill]
     Full Idea: Whatever is made up of parts is made up of parts of those parts.
     From: John Stuart Mill (System of Logic [1843], 3.24.5)
     A reaction: Mill considers this principle to be fundamental to the possibilities of arithmetic. Presumably he thought of it as an inductive inference from our dealings with physical objects.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
The essence is that without which a thing can neither be, nor be conceived to be [Mill]
     Full Idea: The essence of a thing was said to be that without which the thing could neither be, nor be conceived to be.
     From: John Stuart Mill (System of Logic [1843], 1.6.2)
     A reaction: Fine cites this as the 'modal' account of essence, as opposed to the 'definitional' account.
10. Modality / A. Necessity / 2. Nature of Necessity
Necessity is what will be, despite any alternative suppositions whatever [Mill]
     Full Idea: That which is necessary, that which must be, means that which will be, whatever suppositions we may make in regard to all other things.
     From: John Stuart Mill (System of Logic [1843], 3.06.6)
     A reaction: [Mill discusses causal necessity] This is quoted by McFetridge. This slightly firms up the definition as 'what has to be true', though it makes it dependent on our 'suppositions'. Presumably nothing beyond our powers of supposition could matter either.
Necessity can only mean what must be, without conditions of any kind [Mill]
     Full Idea: If there be any meaning which confessedly belongs to the term necessity, it is unconditionalness. That which is necessary, that which must be, means that which will be whatever supposition we make with regard to other things.
     From: John Stuart Mill (System of Logic [1843], p.339 [1974 ed]), quoted by R.D. Ingthorsson - A Powerful Particulars View of Causation 5.3
     A reaction: 'It is necessary to leave now, if you want to catch the train' is a genuine type of necessity. Mill's type is probably Absolute necessity, to which nothing could make any difference. Or Metaphysical necessity, determined by all things.
12. Knowledge Sources / B. Perception / 3. Representation
Representation assumes you know the ideas, and the reality, and the relation between the two [Ryle]
     Full Idea: The theory of Representative Ideas begs the whole question, by assuming a) that we can know these 'Ideas', b) that we can know the realities they represent, and c) we can know a particular 'idea' to be representative of a particular reality.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: Personally I regard the ideas as immediate (rather than acquired by some knowledge process), and I am dimly hoping that they represent reality (or I'm in deep trouble), and I am struggling to piece together the reality they represent. I'm happy with that.
12. Knowledge Sources / B. Perception / 6. Inference in Perception
Most perception is one-tenth observation and nine-tenths inference [Mill]
     Full Idea: In almost every act of our perceiving faculties, observation and inference are intimately blended. What we are said to observe is usually a compound result, of which one-tenth may be observation, and the remaining nine-tenths inference.
     From: John Stuart Mill (System of Logic [1843], 4.1.2), quoted by Peter Lipton - Inference to the Best Explanation (2nd) 11 'The scientific'
     A reaction: We seem to think that his kind of observation is a great realisation of twentieth century thought, but thoughtful empiricists spotted it much earlier.
12. Knowledge Sources / D. Empiricism / 4. Pro-Empiricism
Clear concepts result from good observation, extensive experience, and accurate memory [Mill]
     Full Idea: The principle requisites of clear conceptions, are habits of attentive observation, an extensive experience, and a memory which receives and retains an exact image of what is observed.
     From: John Stuart Mill (System of Logic [1843], 4.2.5)
     A reaction: Empiricists are always crying out for people to 'attend to the evidence', and this is the deeper reason why. Not only will one know the world better in a direct way, but one will actually think more clearly. Darwin is the perfect model for this.
14. Science / A. Basis of Science / 5. Anomalies
Inductive generalisation is more reliable than one of its instances; they can't all be wrong [Mill]
     Full Idea: A general proposition collected from particulars is often more certainly true than any one of the particular propositions from which, by an act of induction, it was inferred. It might be erroneous in any instance, but cannot be erroneous in all of them.
     From: John Stuart Mill (System of Logic [1843], 4.1.2), quoted by Peter Lipton - Inference to the Best Explanation (2nd) 11 'The scientific'
     A reaction: One anomaly can be ignored, but several can't, especially if the anomalies agree.
14. Science / C. Induction / 1. Induction
The whole theory of induction rests on causes [Mill]
     Full Idea: The notion of cause is the root of the whole theory of induction.
     From: John Stuart Mill (System of Logic [1843], 3.05.2), quoted by Peter Lipton - Inference to the Best Explanation (2nd) 08 'From cause'
     A reaction: This sounds much better to me than the Humean view that it rests on the psychology of regularity and habit. However, maybe Hume describes induction, and Mill is adding abduction (inference to the best explanation).
Mill's methods (Difference,Agreement,Residues,Concomitance,Hypothesis) don't nail induction [Mill, by Lipton]
     Full Idea: The Method of Difference, and even the full four 'experimental methods' (Difference, Agreement, Residues and Concomitant Variations) are agreed on all sides to be incomplete accounts of inductive inference. Mill himself added the Method of Hypothesis.
     From: report of John Stuart Mill (System of Logic [1843], 3.14.4-5) by Peter Lipton - Inference to the Best Explanation (2nd) 08 'Improved'
     A reaction: If induction is just 'learning from experience' (my preferred definition) then there is unlikely to be a precise account of its methods. Mill seems to have done a lovely job.
14. Science / D. Explanation / 1. Explanation / a. Explanation
Surprisingly, empiricists before Mill ignore explanation, which seems to transcend experience [Mill, by Ruben]
     Full Idea: It is surprising that no empiricist philosopher before Mill turned in an explicit way to the scrutiny of the concept of explanation, which had …every appearance of being experience-transcendent.
     From: report of John Stuart Mill (System of Logic [1843]) by David-Hillel Ruben - Explaining Explanation Ch 4
     A reaction: Yes indeed! This is why explanation is absolutely basic, to philosophy and to human understanding. The whole of philosophy is a quest for explanations, so to be strictly empirical about it strikes me as crazy.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Explanation is fitting of facts into ever more general patterns of regularity [Mill, by Ruben]
     Full Idea: For Mill, explanation was always the fitting of facts into ever more general patterns of regularity.
     From: report of John Stuart Mill (System of Logic [1843]) by David-Hillel Ruben - Explaining Explanation Ch 6
     A reaction: This seems to nicely capture the standard empirical approach to explanation. If you say that this fitting in doesn't explain much, the answer (I think) is that this is the best we can do.
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
Causal inference is by spotting either Agreements or Differences [Mill, by Lipton]
     Full Idea: The best known account of causal inference is Mill's Method of Agreement (only one antecedent is shared by the effects), and the Method of Difference (there is only one difference prior to the effect occurring or not occurring).
     From: report of John Stuart Mill (System of Logic [1843], 3.07) by Peter Lipton - Inference to the Best Explanation (2nd) 01 'Descr'
     A reaction: [my summary of Lipton's summary of Mill]
14. Science / D. Explanation / 3. Best Explanation / a. Best explanation
The Methods of Difference and of Agreement are forms of inference to the best explanation [Mill, by Lipton]
     Full Idea: Like Mill's Method of Difference, applications of the Method of Agreement are naturally construed as inferences to the best explanation.
     From: report of John Stuart Mill (System of Logic [1843], 3.07/8) by Peter Lipton - Inference to the Best Explanation (2nd) 06 'The Method'
     A reaction: This sort of thoroughly sensible approach to understanding modes of investigation has been absurdly sidelined by the desire to 'deduce' observations from 'laws'. Scientific investigation is no different from enquiry in daily life. Where are my glasses?
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We can focus our minds on what is common to a whole class, neglecting other aspects [Mill]
     Full Idea: The voluntary power which the mind has, of attending to one part of what is present at any moment, and neglecting another part, enables us to be unaffected by anything in the idea which is not really common to the whole class.
     From: John Stuart Mill (System of Logic [1843], 4.2.1)
     A reaction: There is a question for empiricists of whether abstraction is a 'voluntary' power or a mechanical one. Associationism presents it as more mechanical. I would say, with Mill, that it is a least partly voluntary, and even rational.
15. Nature of Minds / C. Capacities of Minds / 7. Seeing Resemblance
We don't recognise comparisons by something in our minds; the concepts result from the comparisons [Mill]
     Full Idea: It is not a law of our intellect that in comparing things and noting their agreements we recognise as realized in the outward world something we already had in our minds. The conception found its way to us as the result of such a comparison.
     From: John Stuart Mill (System of Logic [1843], 4.2.2)
     A reaction: He recognises, of course, that this gradually becomes a two-way process. In the physicalist view of things, it is not really of great importance which concepts are hard-wired, and which constructed culturally or through perception.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
If you like judgments and reject propositions, what are the relata of incoherence in a judgment? [Ryle]
     Full Idea: Those who find 'judgments' everywhere and propositions nowhere find that some judgments cohere whereas others are incoherent. What is the status of the terms between which these relations hold?
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: Ryle is playing devil's advocate, but this strikes me as a nice point. I presume Russell after 1906 is the sort of thinker he has in mind.
18. Thought / E. Abstraction / 1. Abstract Thought
General conceptions are a necessary preliminary to Induction [Mill]
     Full Idea: Forming general conceptions is a necessary preliminary to Induction.
     From: John Stuart Mill (System of Logic [1843], 4.2.1)
     A reaction: A key link in the framework of empirical philosophies, which gets us from experience to science. Induction is the very process of generalisation. We can't bring a concept like 'evolution' to preliminary observations, so it must be formulated inductively.
The study of the nature of Abstract Ideas does not belong to logic, but to a different science [Mill]
     Full Idea: The metaphysical inquiry into the nature and composition of what have been called Abstract Ideas, or in other words, of the notions which answer in the mind to classes and to general names, belongs not to Logic, but to a different science.
     From: John Stuart Mill (System of Logic [1843], 4.2.1)
     A reaction: He doesn't name the science, but the point here seems to be precisely what Frege so vigorously disagreed with. I would say that the state of being 'abstract' has logical aspects, and can be partly described by logic, but that Mill is basically right.
19. Language / A. Nature of Meaning / 1. Meaning
Husserl and Meinong wanted objective Meanings and Propositions, as subject-matter for Logic [Ryle]
     Full Idea: It is argued by Husserl and (virtually) by Meinong that only if there are such entities as objective Meanings - and propositions are just a species of Meaning - is there anything for Logic to be about.
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: It is presumably this proposal which led to the scepticism about meanings in Wittgenstein, Quine and Kripke. The modern view, which strikes me as right, is that logic is about inference, and so doesn't need a subject-matter.
19. Language / A. Nature of Meaning / 3. Meaning as Speaker's Intention
When I utter a sentence, listeners grasp both my meaning and my state of mind [Ryle]
     Full Idea: If I have uttered my sentence aloud, a listener can both understand what I say or grasp my meaning, and also infer to my state of mind.
     From: Gilbert Ryle (Are there propositions? [1930], I)
     A reaction: This simple observations seems rather important. If we shake written words onto the floor, they might add up to a proper sentence, but half of the point of a sentence is missing. Irony trades on the gap between meaning and state of mind.
19. Language / D. Propositions / 1. Propositions
'Propositions' name what is thought, because 'thoughts' and 'judgments' are too ambiguous [Ryle]
     Full Idea: As the orthodox terms 'thoughts' and 'judgments' are equivocal, since they may equally well denote 'thinkings' as 'what-is-thought', the 'accusatives' of acts of thinking have come to be called 'propositions'.
     From: Gilbert Ryle (Are there propositions? [1930], I)
     A reaction: I have understood propositions to be capable of truth or falsity. 'What is thought' could be a right old jumble of images and disjointed fragments. Propositions are famous for their unity!
19. Language / D. Propositions / 4. Mental Propositions
Several people can believe one thing, or make the same mistake, or share one delusion [Ryle]
     Full Idea: We ordinarily find no difficulty in saying of a given thing that several people believe it and so, if they think it false, 'make the same mistake' or 'labour under the same delusion'.
     From: Gilbert Ryle (Are there propositions? [1930], IV)
     A reaction: Ryle is playing devil's advocate, but this (like 13980) strikes me as quite good support for propositions. I suppose you can describe these phenomena as assent to sentences, but they might be very different sentences to express the same delusion.
We may think in French, but we don't know or believe in French [Ryle]
     Full Idea: Although we speak of thinking in French, we never talk of knowing or believing or opining in French.
     From: Gilbert Ryle (Are there propositions? [1930], 'Substitute')
     A reaction: Once again Ryle is playing devil's advocate, but he does it rather well, and offers good support for my belief in propositions. I love this. 'I know, in French, a bank where the wild thyme blows'.
19. Language / D. Propositions / 6. Propositions Critique
There are no propositions; they are just sentences, used for thinking, which link to facts in a certain way [Ryle]
     Full Idea: There are no substantial propositions...There is just a relation between grammatical structure and the logical structure of facts. 'Proposition' denotes the same as 'sentence' or 'statement'. A proposition is not what I think, but what I think or talk in.
     From: Gilbert Ryle (Are there propositions? [1930], 'Conclusions')
     A reaction: The conclusion of Ryle's discussion, but I found his support for propositions much more convincing than his critique of them, or his attempt at an alternative linguistic account. He never mentioned animals, so he self-evidently hasn't grasped the problem.
If we accept true propositions, it is hard to reject false ones, and even nonsensical ones [Ryle]
     Full Idea: All the arguments for the subsistence of true propositions seem to hold good for the subsistence of false ones. We might even have to find room for absurd or nonsensical ones like 'some round squares are not red-headed'.
     From: Gilbert Ryle (Are there propositions? [1930], 'Objections')
     A reaction: A particularly nice example of a Category Mistake from the man who made them famous. Why can't we just make belief a proposition attitude, so I equally believe 'sea is blue', 'grass is pink' and 'trees are bifocal', but the status of my belief varies?
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
There are probably no infinities, and 'infinite' names what we do not yet know [Rovelli]
     Full Idea: 'Infinite', ultimately, is the name that we give to what we do not yet know. Nature appears to be telling us that there is nothing truly infinite.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 11)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / d. The unlimited
The basic ideas of fields and particles are merged in quantum mechanics [Rovelli]
     Full Idea: The notions of fields and particles, separated by Faraday and Maxwell, end up merging in quantum mechanics.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: This sounds to me just like Anaximander's 'apeiron' - the unlimited [Rovelli agrees! p.168]. Anaximander predicted the wall which enquiry would hit, but we now have more detail.
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
A cause is the total of all the conditions which inevitably produce the result [Mill]
     Full Idea: A cause is the sum total of the conditions positive and negative taken together ...which being realized, the consequent invariably follows.
     From: John Stuart Mill (System of Logic [1843]), quoted by Donald Davidson - Causal Relations §1
     A reaction: This has obvious problems. The absence of Napoleon was a cause of the English Civil War. The Big Bang was a cause of, well, every event. As Davidson notes, some narrowing down is needed.
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
Causes and conditions are not distinct, because we select capriciously from among them [Mill]
     Full Idea: Nothing can better show the absence of any scientific ground for the distinction between the cause of a phenomena and its conditions, than the capricious manner in which we select from among the conditions that which we choose to denominate the cause.
     From: John Stuart Mill (System of Logic [1843]), quoted by Jonathan Schaffer - The Metaphysics of Causation 2.2
     A reaction: [ref Mill p.196, 1846 edn] Schaffer gives this as the main argument for the 'no-basis' view of the selection of what causes an event. The usual thought is that it is entirely our immediate interests which make us select THE cause. Not convinced.
The strict cause is the total positive and negative conditions which ensure the consequent [Mill]
     Full Idea: The cause, philosophically speaking, is the sum total of the conditions, positive and negative taken together; the whole of the contigencies of every description, which being realized, the consequent invariably follows.
     From: John Stuart Mill (System of Logic [1843], 3.05.3)
     A reaction: This somewhat notorious remark is not going to be much help in a law court or a laboratory. It is that view which says that the Big Bang must be included in every causal list ever compiled. Well, yes...
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Causation is just invariability of succession between every natural fact and a preceding fact [Mill]
     Full Idea: The Law of Causation, the recognition of which is the main pillar of inductive science, is but the familiar truth, that invariability of succession is found by observation between every fact in nature and some other fact which has preceded it.
     From: John Stuart Mill (System of Logic [1843], 3.5.2), quoted by Bertrand Russell - On the Notion of Cause p.178
     A reaction: Note that Mill rests causation on 'facts'. In the empiricist Mill endorsing the views of Hume. Russell attacks the bogus claim that science rests on causation. Personally I think Mill's view is incorrect.
26. Natural Theory / C. Causation / 9. General Causation / d. Causal necessity
A cause is an antecedent which invariably and unconditionally leads to a phenomenon [Mill]
     Full Idea: We may define the cause of a phenomenon to be the antecedent, or the concurrence of the antecedents, on which it is invariably and unconditionally consequent.
     From: John Stuart Mill (System of Logic [1843], 3.05.6)
     A reaction: This ignores the possibility of the world ending just before the effect occurs, the 'ceteris paribus' clause. If it only counts as a cause if the effect has actually occurred, we begin to suspect tautology.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
Mill's regularity theory of causation is based on an effect preceded by a conjunction of causes [Mill, by Psillos]
     Full Idea: Millian causation is a version of the Regularity Theory, but with the addition that when claiming that an effect invariably follows from the cause, the cause is not a single factor, but a whole conjunction of necessary and sufficient conditions.
     From: report of John Stuart Mill (System of Logic [1843], p.217) by Stathis Psillos - Causation and Explanation §2.2
     A reaction: Psillos endorses this as an improvement on Hume. But while we may replicate one event preceding another to get regularity, groups of events are hardly ever identical, so no precise pattern will ever be seen.
In Mill's 'Method of Agreement' cause is the common factor in a range of different cases [Mill, by Psillos]
     Full Idea: In Mill's 'Method of Agreement' the cause is the common factor in a number of otherwise different cases in which the effect occurs.
     From: report of John Stuart Mill (System of Logic [1843], p.255) by Stathis Psillos - Causation and Explanation §2.3
     A reaction: This looks more likely to be good evidence for the cause of an event, rather than a definition of what a cause actually is. Suppose a footballer only scores if and only if I go to watch him?
In Mill's 'Method of Difference' the cause is what stops the effect when it is removed [Mill, by Psillos]
     Full Idea: In Mill's 'Method of Difference' the cause is the factor which is different in two cases which are similar, except that in one the effect occurs, and in the other it doesn't.
     From: report of John Stuart Mill (System of Logic [1843], p.256) by Stathis Psillos - Causation and Explanation §2.3
     A reaction: Like the Method of Agreement, this is a good test, but is unlikely to be a conclusive hallmark of causation. A footballer may never score unless I go to watch him. I become his lucky mascot…
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
What are the fewest propositions from which all natural uniformities could be inferred? [Mill]
     Full Idea: What are the fewest general propositions from which all the uniformities which exist in the universe might be deductively inferred?
     From: John Stuart Mill (System of Logic [1843], 3.4.1)
     A reaction: This is the germ of the Mill-Ramsey-Lewis view.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Because it is quantised, a field behaves like a set of packets of energy [Rovelli]
     Full Idea: Since the energy of the electromagnetic field can take on only certain values, the field behaves like a set of packets of energy.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
There are about fifteen particles fields, plus a few force fields [Rovelli]
     Full Idea: There are about fifteen fields, whose quanta are elementary particles (electrons, quarks, muons, neutrinos, Higgs, and little else), plus a few fields similar to the electromagnetic one, which describe forces at a nuclear scale, with quanta like photons.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: According to Rovelli, this sentence describes the essence of physical reality.
The world consists of quantum fields, with elementary events happening in spacetime [Rovelli]
     Full Idea: The world is not made up of fields and particles, but of a single type of entity: the quantum field. There are no longer particles which move in space with the passage of time, but quantum fields whose elementary events happen in spacetime.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: If you are not a scientist, there is (I find) a strong tendency to read and digest stuff like this, and then forget it the next day, because it so far from our experience. Folk like me have to develop two parallel views of the nature of reality.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons only exist when they interact, and their being is their combination of quantum leaps [Rovelli]
     Full Idea: Electrons don't always exist. They exist when they interact. They materialize when they collide with something. The quantum leap from one orbit to another constitutes their way of being real. An electron is a combination of leaps between interactions.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: If a philosopher with an Aristotelian interest in the nature of matter wants to grasp the modern view, the electron looks like the thing to focus on. You can feel Rovelli battling here to find formulations that might satisfy a philosopher.
Electrons are not waves, because their collisions are at a point, and not spread out [Rovelli]
     Full Idea: Schrödinger's wave is a bad image for an electron, because when a particle collides with something else, it is always at a point: it is never spread out in space like a wave.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04 note)
     A reaction: And yet there is the diffusion in the two-slit experiment, which Thomas Young discovered for light. I must take Rovelli's word for this.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Quantum Theory describes events and possible interactions - not how things are [Rovelli]
     Full Idea: Quantum Theory does not describe things as they are: it describes how things occur and interact with each other. It doesn't describe where there is a particle but how it shows itself to others. The world of existence is reduced to possible interactions.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
     A reaction: Fans of 'process philosophy' should like this, though he is not denying that there may be facts about how things are - it is just that this is not mentioned in the theory. There is not much point in philosophers yearning to know the reality.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Nature has three aspects: granularity, indeterminacy, and relations [Rovelli]
     Full Idea: I think that quantum mechanics has revealed three aspects of the nature of things: granularity, indeterminacy, and the relational structure of the world.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 04)
27. Natural Reality / C. Space / 4. Substantival Space
The world is just particles plus fields; space is the gravitational field [Rovelli]
     Full Idea: The world is made up of particles + fields, and nothing else; there is no need to add space as an extra ingredient. Newton's space is the gravitational field.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 03)
     A reaction: I get the impression that particles are just bumps or waves in the fields [yes! Rovelli p.110], which would mean there are fields and nothing else. And no one seems to know what a field is.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Only heat distinguishes past from future [Rovelli]
     Full Idea: It is always heat and only heat that distinguishes the past from the future.
     From: Carlo Rovelli (Reality is Not What it Seems [2014], 12)
     A reaction: I can remember the past but not the future - so can that fact be reduced to facts about heat?