Combining Texts

All the ideas for 'Monadology', 'Structures and Structuralism in Phil of Maths' and 'A Theory of Conditionals'

unexpand these ideas     |    start again     |     specify just one area for these texts


39 ideas

2. Reason / B. Laws of Thought / 2. Sufficient Reason
No fact can be real and no proposition true unless there is a Sufficient Reason (even if we can't know it) [Leibniz]
     Full Idea: The principle of sufficient reason says no fact can be real or existing and no proposition can be true unless there is a sufficient reason why it should be thus and not otherwise, even though in most cases these reasons cannot be known to us.
     From: Gottfried Leibniz (Monadology [1716], §32)
     A reaction: I think of this as my earliest philosophical perception, a childish rebellion against being told that there was 'no reason' for something. My intuition tells me that it is correct, and the foundation of ontology and truth. Don't ask me to justify it!
3. Truth / D. Coherence Truth / 1. Coherence Truth
Everything in the universe is interconnected, so potentially a mind could know everything [Leibniz]
     Full Idea: Every body is sensitive to everything in the universe, so that one who saw everything could read in each body what is happening everywhere, and even what has happened and will happen.
     From: Gottfried Leibniz (Monadology [1716], §61)
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Falsehood involves a contradiction, and truth is contradictory of falsehood [Leibniz]
     Full Idea: We judge to be false that which involves a contradiction, and true that which is opposed or contradictory to the false.
     From: Gottfried Leibniz (Monadology [1716], §31)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
The monad idea incomprehensibly spiritualises matter, instead of materialising soul [La Mettrie on Leibniz]
     Full Idea: The Leibnizians with their monads have constructed an incomprehensible hypothesis. They have spiritualized matter rather than materialising the soul.
     From: comment on Gottfried Leibniz (Monadology [1716]) by Julien Offray de La Mettrie - Machine Man p.3
     A reaction: I agree with La Mettrie. This disagreement shows, I think, how important the problem of interaction between mind and body was in the century after Descartes. Drastic action seemed needed to bridge the gap, one way or the other.
He replaced Aristotelian continuants with monads [Leibniz, by Wiggins]
     Full Idea: In the end Leibniz dethroned Aristotelian continuants, seen as imperfect from his point of view, in favour of monads.
     From: report of Gottfried Leibniz (Monadology [1716]) by David Wiggins - Sameness and Substance Renewed 3.1
     A reaction: I take the 'continuants' to be either the 'ultimate subject of predication' (in 'Categories'), or 'essences' (in 'Metaphysics'). Since monads seem to be mental (presumably to explain the powers of things), this strikes me as a bit mad.
Is a drop of urine really an infinity of thinking monads? [Voltaire on Leibniz]
     Full Idea: Can you really maintain that a drop of urine is an infinity of monads, and that each one of these has ideas, however obscure, of the entire universe?
     From: comment on Gottfried Leibniz (Monadology [1716]) by Francois-Marie Voltaire - works Vol 22:434
     A reaction: Monads are a bit like Christian theology - if you meet them cold they seem totally ridiculous, but if you meet them after ten years of careful preliminary study they make (apparently) complete sense. Defenders of panpsychism presumably like them.
It is unclear in 'Monadology' how extended bodies relate to mind-like monads. [Garber on Leibniz]
     Full Idea: It is never clear in the 'Monadologie' how exactly the world of extended bodies is related to the world of simple substances, the world of non-extended and mind-like monads.
     From: comment on Gottfried Leibniz (Monadology [1716]) by Daniel Garber - Leibniz:Body,Substance,Monad 9
     A reaction: Leibniz was always going to hit the interaction problem, as soon as he started giving an increasingly spiritual account of what a substance, and hence marginalising the 'force' which had held centre-stage earlier on. Presumably they are 'parallel'.
Changes in a monad come from an internal principle, and the diversity within its substance [Leibniz]
     Full Idea: A monad's natural changes come from an internal principle, ...but there must be diversity in that which changes, which produces the specification and variety of substances.
     From: Gottfried Leibniz (Monadology [1716], §11-12)
     A reaction: You don't have to like monads to like this generalisation (and Perkins says Leibniz had a genius for generalisations). Metaphysics must give an account of change. Succeeding time-slices etc explain nothing. Principle and substance must meet.
A 'monad' has basic perception and appetite; a 'soul' has distinct perception and memory [Leibniz]
     Full Idea: The general name 'monad' or 'entelechy' may suffice for those substances which have nothing but perception and appetition; the name 'souls' may be reserved for those having perception that is more distinct and accompanied by memory.
     From: Gottfried Leibniz (Monadology [1716], §19)
     A reaction: It is basic to the study of Leibniz that you don't think monads are full-blown consciousnesses. He isn't really a panpsychist, because the level of mental activity is so minimal. There seem to be degrees of monadhood.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
9. Objects / B. Unity of Objects / 2. Substance / e. Substance critique
If a substance is just a thing that has properties, it seems to be a characterless non-entity [Leibniz, by Macdonald,C]
     Full Idea: For Leibniz, to distinguish between a substance and its properties in order to provide a thing or entity in which properties can inhere leads necessarily to the absurd conclusion that the substance itself must be a truly characterless non-entity.
     From: report of Gottfried Leibniz (Monadology [1716]) by Cynthia Macdonald - Varieties of Things Ch.3
     A reaction: This is obviously one of the basic thoughts in any discussion of substances. It is why physicists ignore them, and Leibniz opted for a 'bundle' theory. But the alternative seems daft too - free-floating properties, hooked onto one another.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
There must be some internal difference between any two beings in nature [Leibniz]
     Full Idea: There are never two beings in nature that are perfectly alike, two beings in which it is not possible to discover an internal difference, that is, one founded on an intrinsic denomination.
     From: Gottfried Leibniz (Monadology [1716], §09)
     A reaction: From this it follows that if two things really are indiscernible, then we must say that they are one thing. He says monads all differ from one another. People certainly do. Leibniz must say this of electrons. How can he know this?
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
In nearby worlds where A is true, 'if A,B' is true or false if B is true or false [Stalnaker]
     Full Idea: Consider a possible world in which A is true and otherwise differs minimally from the actual world. 'If A, then B' is true (false) just in case B is true (false) in that possible world.
     From: Robert C. Stalnaker (A Theory of Conditionals [1968], p.34), quoted by Dorothy Edgington - Conditionals (Stanf) 4.1
     A reaction: This is the first proposal to give a possible worlds semantics for conditional statements. Edgington observes that worlds which are nearby for me may not be nearby for you.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Truths of reason are known by analysis, and are necessary; facts are contingent, and their opposites possible [Leibniz]
     Full Idea: There are two kinds of truths: of reasoning and of facts. Truths of reasoning are necessary and their opposites impossible. Facts are contingent and their opposites possible. A necessary truth is known by analysis.
     From: Gottfried Leibniz (Monadology [1716], §33)
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
A possible world is the ontological analogue of hypothetical beliefs [Stalnaker]
     Full Idea: A possible world is the ontological analogue of a stock of hypothetical beliefs.
     From: Robert C. Stalnaker (A Theory of Conditionals [1968], p.34), quoted by Dorothy Edgington - Conditionals (Stanf) 4.1
     A reaction: Sounds neat and persuasive. What is the ontological analogue of a stock of hopes? Heaven!
12. Knowledge Sources / A. A Priori Knowledge / 4. A Priori as Necessities
Mathematical analysis ends in primitive principles, which cannot be and need not be demonstrated [Leibniz]
     Full Idea: At the end of the analytical method in mathematics there are simple ideas of which no definition can be given. Moreover there are axioms and postulates, in short, primitive principles, which cannot be demonstrated and do not need demonstration.
     From: Gottfried Leibniz (Monadology [1716], §35)
     A reaction: My view is that we do not know such principles when we apprehend them in isolation. I would call them 'intuitions'. They only ascend to the status of knowledge when the mathematics is extended and derived from them, and found to work.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
We all expect the sun to rise tomorrow by experience, but astronomers expect it by reason [Leibniz]
     Full Idea: When we expect it to be day tomorrow, we all behave as empiricists, because until now it has always happened thus. The astronomer alone knows this by reason.
     From: Gottfried Leibniz (Monadology [1716], §28)
15. Nature of Minds / B. Features of Minds / 3. Privacy
Increase a conscious machine to the size of a mill - you still won't see perceptions in it [Leibniz]
     Full Idea: If a conscious machine were increased in size, one might enter it like a mill, but we should only see the parts impinging on one another; we should not see anything which would explain a perception.
     From: Gottfried Leibniz (Monadology [1716], §17)
     A reaction: A wonderful image for capturing a widely held intuition. It seems to motivate Colin McGinn's 'Mysterianism'. The trouble is Leibniz didn't think big/small enough. Down at the level of molecules it might become obvious what a perception is. 'Might'.
16. Persons / C. Self-Awareness / 2. Knowing the Self
We know the 'I' and its contents by abstraction from awareness of necessary truths [Leibniz]
     Full Idea: It is through the knowledge of necessary truths and through their abstraction that we rise to reflective acts, which enable us to think of that which is called "I" and enable us to consider that this or that is in us.
     From: Gottfried Leibniz (Monadology [1716], §30)
     A reaction: For Leibniz, necessary truth can only be known a priori. Sense experience won't reveal the self, as Hume observed. We evidently 'abstract' the idea of 'I' from the nature of a priori thought. Animals have no self (or morals) for this reason.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
The true elements are atomic monads [Leibniz]
     Full Idea: Monads are the true atoms of nature and, in brief, the elements of things.
     From: Gottfried Leibniz (Monadology [1716], (opening)), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 2
     A reaction: Thus in one sentence Leibniz gives us a theory of natural elements, and an account of atoms. This kind of speculation got metaphysics a bad name when science unravelled a more accurate picture. The bones must be picked out of Leibniz.
28. God / A. Divine Nature / 3. Divine Perfections
This is the most perfect possible universe, in its combination of variety with order [Leibniz]
     Full Idea: From all the possible universes God chooses this one to obtain as much variety as possible, but with the greatest order possible; that is, it is the means of obtaining the greatest perfection possible.
     From: Gottfried Leibniz (Monadology [1716], §58)
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
God alone (the Necessary Being) has the privilege that He must exist if He is possible [Leibniz]
     Full Idea: God alone (or the Necessary Being) has the privilege that He must exist if He is possible.
     From: Gottfried Leibniz (Monadology [1716], §45)