Combining Texts

All the ideas for 'Exigency to Exist in Essences', 'Goodbye Descartes' and 'Structures and Structuralism in Phil of Maths'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Logic was merely a branch of rhetoric until the scientific 17th century [Devlin]
     Full Idea: Until the rise of what we call the scientific method in the seventeenth century, logic was regarded largely as one aspect of rhetoric - a study of how one person't argument could convince another.
     From: Keith Devlin (Goodbye Descartes [1997], Ch.11)
     A reaction: This may well give the main reason why the Greeks invented logic in the first place. Aristotle wrote a book on rhetoric, and that was where the money was. Leibniz is clearly a key figure in the change of attitude.
3. Truth / F. Semantic Truth / 2. Semantic Truth
While true-in-a-model seems relative, true-in-all-models seems not to be [Reck/Price]
     Full Idea: While truth can be defined in a relative way, as truth in one particular model, a non-relative notion of truth is implied, as truth in all models.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: [The article is actually discussing arithmetic] This idea strikes me as extremely important. True-in-all-models is usually taken to be tautological, but it does seem to give a more universal notion of truth. See semantic truth, Tarski, Davidson etc etc.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'No councillors are bankers' and 'All bankers are athletes' implies 'Some athletes are not councillors' [Devlin]
     Full Idea: Most people find it hard to find any conclusion that fits the following premises: 'No councillors are bankers', and 'All bankers are athletes'. There is a valid conclusion ('Some athletes are not councillors') but it takes quite an effort to find it.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: A nice illustration of the fact that syllogistic logic is by no means automatic and straightforward. There is a mechanical procedure, but a lot of intuition and common sense is also needed.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Modern propositional inference replaces Aristotle's 19 syllogisms with modus ponens [Devlin]
     Full Idea: Where Aristotle had 19 different inference rules (his valid syllogisms), modern propositional logic carries out deductions using just one rule of inference: modus ponens.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: At first glance it sounds as if Aristotle's guidelines might be more useful than the modern one, since he tells you something definite and what implies what, where modus ponens just seems to define the word 'implies'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Predicate logic retains the axioms of propositional logic [Devlin]
     Full Idea: Since predicate logic merely extends propositional logic, all the axioms of propositional logic are axioms of predicate logic.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: See Idea 7798 for the axioms.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC set theory has only 'pure' sets, without 'urelements' [Reck/Price]
     Full Idea: In standard ZFC ('Zermelo-Fraenkel with Choice') set theory we deal merely with pure sets, not with additional urelements.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: The 'urelements' would the actual objects that are members of the sets, be they physical or abstract. This idea is crucial to understanding philosophy of mathematics, and especially logicism. Must the sets exist, just as the urelements do?
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Situation theory is logic that takes account of context [Devlin]
     Full Idea: In many respects, situation theory is an extension of classical logic that takes account of context.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 8)
     A reaction: John Barwise is cited as the parent of this movement. Many examples show that logical form is very hard to pin down, because word-meaning depends on context (e.g. 'several crumbs' differs from 'several mountains').
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Montague's intensional logic incorporated the notion of meaning [Devlin]
     Full Idea: Montague's intensional logic was the first really successful attempt to develop a mathematical framework that incorporates the notion of meaning.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 8)
     A reaction: Previous logics, led by Tarski, had flourished by sharply dividing meaning from syntax, and concentrating on the latter.
Golden ages: 1900-1960 for pure logic, and 1950-1985 for applied logic [Devlin]
     Full Idea: The period from 1900 to about 1960 could be described as the golden age of 'pure' logic, and 1950 to 1985 the golden age of 'applied' logic (e.g. applied to everyday reasoning, and to theories of language).
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: Why do we always find that we have just missed the Golden Age? However this supports the uneasy feeling that the golden age for all advances in human knowledge is just coming to an end. Biology, including the brain, is the last frontier.
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Where a conditional is purely formal, an implication implies a link between premise and conclusion [Devlin]
     Full Idea: Implication involves some form of link or causality between the antecedent and the consequent of an if-then; normally it says that the conclusion is a consequence of the premise (where conditionals are just defined by 'true' and 'false').
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: This distinction is a key one when discussing 'If-then' sentences. Some are merely formal conditionals, but others make real claims about where you can get to from where you are.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Sentences of apparent identical form can have different contextual meanings [Devlin]
     Full Idea: "Safety goggles must be worn in the building" is clear enough, but "dogs must always be carried on the escalator" doesn't require us to head off in search of a dog.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 1)
     A reaction: A nice illustration of how the requirements of logical form will often take us beyond the strict and literal meaning of a sentence, into context, tone, allusion and subjective aspects.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Three types of variable in second-order logic, for objects, functions, and predicates/sets [Reck/Price]
     Full Idea: In second-order logic there are three kinds of variables, for objects, for functions, and for predicates or sets.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: It is interesting that a predicate seems to be the same as a set, which begs rather a lot of questions. For those who dislike second-order logic, there seems nothing instrinsically wicked in having variables ranging over innumerable multi-order types.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Space and time are atomic in the arrow, and divisible in the tortoise [Devlin]
     Full Idea: The arrow paradox starts with the assumption that space and time are atomic; the tortoise starts with the opposite assumption that space and time are infinitely divisible.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: Aquinas similarly covers all options (the cosmos has a beginning, or no beginning). The nature of movement in a space which involves quantum leaps remains metaphysically puzzling. Where is a particle at half of the Planck time?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
'Analysis' is the theory of the real numbers [Reck/Price]
     Full Idea: 'Analysis' is the theory of the real numbers.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: 'Analysis' began with the infinitesimal calculus, which later built on the concept of 'limit'. A continuum of numbers seems to be required to make that work.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Mereological arithmetic needs infinite objects, and function definitions [Reck/Price]
     Full Idea: The difficulties for a nominalistic mereological approach to arithmetic is that an infinity of physical objects are needed (space-time points? strokes?), and it must define functions, such as 'successor'.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: Many ontologically austere accounts of arithmetic are faced with the problem of infinity. The obvious non-platonist response seems to be a modal or if-then approach. To postulate infinite abstract or physical entities so that we can add 3 and 2 is mad.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Peano Arithmetic can have three second-order axioms, plus '1' and 'successor' [Reck/Price]
     Full Idea: A common formulation of Peano Arithmetic uses 2nd-order logic, the constant '1', and a one-place function 's' ('successor'). Three axioms then give '1 is not a successor', 'different numbers have different successors', and induction.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: This is 'second-order' Peano Arithmetic, though it is at least as common to formulate in first-order terms (only quantifying over objects, not over properties - as is done here in the induction axiom). I like the use of '1' as basic instead of '0'!
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set-theory gives a unified and an explicit basis for mathematics [Reck/Price]
     Full Idea: The merits of basing an account of mathematics on set theory are that it allows for a comprehensive unified treatment of many otherwise separate branches of mathematics, and that all assumption, including existence, are explicit in the axioms.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I am forming the impression that set-theory provides one rather good model (maybe the best available) for mathematics, but that doesn't mean that mathematics is set-theory. The best map of a landscape isn't a landscape.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism emerged from abstract algebra, axioms, and set theory and its structures [Reck/Price]
     Full Idea: Structuralism has emerged from the development of abstract algebra (such as group theory), the creation of axiom systems, the introduction of set theory, and Bourbaki's encyclopaedic survey of set theoretic structures.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §2)
     A reaction: In other words, mathematics has gradually risen from one level of abstraction to the next, so that mathematical entities like points and numbers receive less and less attention, with relationships becoming more prominent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Relativist Structuralism just stipulates one successful model as its arithmetic [Reck/Price]
     Full Idea: Relativist Structuralism simply picks one particular model of axiomatised arithmetic (i.e. one particular interpretation that satisfies the axioms), and then stipulates what the elements, functions and quantifiers refer to.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: The point is that a successful model can be offered, and it doesn't matter which one, like having any sort of aeroplane, as long as it flies. I don't find this approach congenial, though having a model is good. What is the essence of flight?
There are 'particular' structures, and 'universal' structures (what the former have in common) [Reck/Price]
     Full Idea: The term 'structure' has two uses in the literature, what can be called 'particular structures' (which are particular relational systems), but also what can be called 'universal structures' - what particular systems share, or what they instantiate.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §6)
     A reaction: This is a very helpful distinction, because it clarifies why (rather to my surprise) some structuralists turn out to be platonists in a new guise. Personal my interest in structuralism has been anti-platonist from the start.
Pattern Structuralism studies what isomorphic arithmetic models have in common [Reck/Price]
     Full Idea: According to 'pattern' structuralism, what we study are not the various particular isomorphic models of arithmetic, but something in addition to them: a corresponding pattern.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §7)
     A reaction: Put like that, we have to feel a temptation to wield Ockham's Razor. It's bad enough trying to give the structure of all the isomorphic models, without seeking an even more abstract account of underlying patterns. But patterns connect to minds..
There are Formalist, Relativist, Universalist and Pattern structuralism [Reck/Price]
     Full Idea: There are four main variants of structuralism in the philosophy of mathematics - formalist structuralism, relativist structuralism, universalist structuralism (with modal variants), and pattern structuralism.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §9)
     A reaction: I'm not sure where Chihara's later book fits into this, though it is at the nominalist end of the spectrum. Shapiro and Resnik do patterns (the latter more loosely); Hellman does modal universalism; Quine does the relativist version. Dedekind?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Formalist Structuralism says the ontology is vacuous, or formal, or inference relations [Reck/Price]
     Full Idea: Formalist Structuralism endorses structural methodology in mathematics, but rejects semantic and metaphysical problems as either meaningless, or purely formal, or as inference relations.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §3)
     A reaction: [very compressed] I find the third option fairly congenial, certainly in preference to rather platonist accounts of structuralism. One still needs to distinguish the mathematical from the non-mathematical in the inference relations.
Maybe we should talk of an infinity of 'possible' objects, to avoid arithmetic being vacuous [Reck/Price]
     Full Idea: It is tempting to take a modal turn, and quantify over all possible objects, because if there are only a finite number of actual objects, then there are no models (of the right sort) for Peano Arithmetic, and arithmetic is vacuously true.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: [compressed; Geoffrey Hellman is the chief champion of this view] The article asks whether we are not still left with the puzzle of whether infinitely many objects are possible, instead of existent.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Universalist Structuralism is based on generalised if-then claims, not one particular model [Reck/Price]
     Full Idea: Universalist Structuralism is a semantic thesis, that an arithmetical statement asserts a universal if-then statement. We build an if-then statement (using quantifiers) into the structure, and we generalise away from any one particular model.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: There remains the question of what is distinctively mathematical about the highly generalised network of inferences that is being described. Presumable the axioms capture that, but why those particular axioms? Russell is cited as an originator.
Universalist Structuralism eliminates the base element, as a variable, which is then quantified out [Reck/Price]
     Full Idea: Universalist Structuralism is eliminativist about abstract objects, in a distinctive form. Instead of treating the base element (say '1') as an ambiguous referring expression (the Relativist approach), it is a variable which is quantified out.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §5)
     A reaction: I am a temperamental eliminativist on this front (and most others) so this is tempting. I am also in love with the concept of a 'variable', which I take to be utterly fundamental to all conceptual thought, even in animals, and not just a trick of algebra.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The existence of an infinite set is assumed by Relativist Structuralism [Reck/Price]
     Full Idea: Relativist Structuralism must first assume the existence of an infinite set, otherwise there would be no model to pick, and arithmetical terms would have no reference.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: See Idea 10169 for Relativist Structuralism. They point out that ZFC has an Axiom of Infinity.
7. Existence / A. Nature of Existence / 5. Reason for Existence
Possibles demand existence, so as many of them as possible must actually exist [Leibniz]
     Full Idea: From the conflict of all the possibles demanding existence, this at once follows, that there exists that series of things by which as many of them as possible exist.
     From: Gottfried Leibniz (Exigency to Exist in Essences [1690], p.91)
     A reaction: I'm in tune with a lot of Leibniz, but my head swims with this one. He seems to be a Lewisian about possible worlds - that they are concrete existing entities (with appetites!). Could Lewis include Leibniz's idea in his system?
God's sufficient reason for choosing reality is in the fitness or perfection of possibilities [Leibniz]
     Full Idea: The sufficient reason for God's choice can be found only in the fitness (convenance) or in the degree of perfection that the several worlds possess.
     From: Gottfried Leibniz (Exigency to Exist in Essences [1690], p.92)
     A reaction: The 'fitness' of a world and its 'perfection' seem very different things. A piece of a jigsaw can have wonderful fitness, without perfection. Occasionally you get that sinking feeling with metaphysicians that they just make it up.
8. Modes of Existence / E. Nominalism / 6. Mereological Nominalism
A nominalist might avoid abstract objects by just appealing to mereological sums [Reck/Price]
     Full Idea: One way for a nominalist to reject appeal to all abstract objects, including sets, is to only appeal to nominalistically acceptable objects, including mereological sums.
     From: E Reck / M Price (Structures and Structuralism in Phil of Maths [2000], §4)
     A reaction: I'm suddenly thinking that this looks very interesting and might be the way to go. The issue seems to be whether mereological sums should be seen as constrained by nature, or whether they are unrestricted. See Mereology in Ontology...|Intrinsic Identity.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
The actual universe is the richest composite of what is possible [Leibniz]
     Full Idea: The actual universe is the collection of the possibles which forms the richest composite.
     From: Gottfried Leibniz (Exigency to Exist in Essences [1690], p.92)
     A reaction: 'Richest' for Leibniz means a maximum combination of existence, order and variety. It's rather like picking the best starting team from a squad of footballers.
13. Knowledge Criteria / E. Relativism / 5. Language Relativism
People still say the Hopi have no time concepts, despite Whorf's later denial [Devlin]
     Full Idea: The Hopi time myth does not appear to have been stopped for a moment by the fact that Whorf himself subsequently wrote that the Hopi language does indeed have words for past, present, and future
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 5)
     A reaction: Arguments for relativism based on the Hopi seem now to be thoroughly discredited. Sensible people never believed them in the first place.
19. Language / C. Assigning Meanings / 1. Syntax
How do we parse 'time flies like an arrow' and 'fruit flies like an apple'? [Devlin]
     Full Idea: How do people identify subject and verb in the sentences "time flies like an arrow" and "fruit flies like an apple"?
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 1)
     A reaction: A nice illustration of the fact that even if we have an innate syntax mechanism, it won't work without some semantics, and some experience of the environmental context of utterances.
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
The distinction between sentences and abstract propositions is crucial in logic [Devlin]
     Full Idea: The distinction between sentences and the abstract propositions that they express is one of the key ideas of logic. A logical argument consists of propositions, assembled together in a systematic fashion.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: He may claim that arguments consist of abstract propositions, but they always get expressed in sentences. However, the whole idea of logical form implies the existence of propositions - there is something which a messy sentence 'really' says.