Combining Texts

All the ideas for 'Monadology', 'works' and 'On Formally Undecidable Propositions'

unexpand these ideas     |    start again     |     specify just one area for these texts


38 ideas

2. Reason / B. Laws of Thought / 2. Sufficient Reason
No fact can be real and no proposition true unless there is a Sufficient Reason (even if we can't know it) [Leibniz]
     Full Idea: The principle of sufficient reason says no fact can be real or existing and no proposition can be true unless there is a sufficient reason why it should be thus and not otherwise, even though in most cases these reasons cannot be known to us.
     From: Gottfried Leibniz (Monadology [1716], §32)
     A reaction: I think of this as my earliest philosophical perception, a childish rebellion against being told that there was 'no reason' for something. My intuition tells me that it is correct, and the foundation of ontology and truth. Don't ask me to justify it!
3. Truth / D. Coherence Truth / 1. Coherence Truth
Everything in the universe is interconnected, so potentially a mind could know everything [Leibniz]
     Full Idea: Every body is sensitive to everything in the universe, so that one who saw everything could read in each body what is happening everywhere, and even what has happened and will happen.
     From: Gottfried Leibniz (Monadology [1716], §61)
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Skolem did not believe in the existence of uncountable sets [Skolem]
     Full Idea: Skolem did not believe in the existence of uncountable sets.
     From: Thoralf Skolem (works [1920], 5.3)
     A reaction: Kit Fine refers somewhere to 'unrepentent Skolemites' who still hold this view.
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Falsehood involves a contradiction, and truth is contradictory of falsehood [Leibniz]
     Full Idea: We judge to be false that which involves a contradiction, and true that which is opposed or contradictory to the false.
     From: Gottfried Leibniz (Monadology [1716], §31)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
The monad idea incomprehensibly spiritualises matter, instead of materialising soul [La Mettrie on Leibniz]
     Full Idea: The Leibnizians with their monads have constructed an incomprehensible hypothesis. They have spiritualized matter rather than materialising the soul.
     From: comment on Gottfried Leibniz (Monadology [1716]) by Julien Offray de La Mettrie - Machine Man p.3
     A reaction: I agree with La Mettrie. This disagreement shows, I think, how important the problem of interaction between mind and body was in the century after Descartes. Drastic action seemed needed to bridge the gap, one way or the other.
He replaced Aristotelian continuants with monads [Leibniz, by Wiggins]
     Full Idea: In the end Leibniz dethroned Aristotelian continuants, seen as imperfect from his point of view, in favour of monads.
     From: report of Gottfried Leibniz (Monadology [1716]) by David Wiggins - Sameness and Substance Renewed 3.1
     A reaction: I take the 'continuants' to be either the 'ultimate subject of predication' (in 'Categories'), or 'essences' (in 'Metaphysics'). Since monads seem to be mental (presumably to explain the powers of things), this strikes me as a bit mad.
Is a drop of urine really an infinity of thinking monads? [Voltaire on Leibniz]
     Full Idea: Can you really maintain that a drop of urine is an infinity of monads, and that each one of these has ideas, however obscure, of the entire universe?
     From: comment on Gottfried Leibniz (Monadology [1716]) by Francois-Marie Voltaire - works Vol 22:434
     A reaction: Monads are a bit like Christian theology - if you meet them cold they seem totally ridiculous, but if you meet them after ten years of careful preliminary study they make (apparently) complete sense. Defenders of panpsychism presumably like them.
It is unclear in 'Monadology' how extended bodies relate to mind-like monads. [Garber on Leibniz]
     Full Idea: It is never clear in the 'Monadologie' how exactly the world of extended bodies is related to the world of simple substances, the world of non-extended and mind-like monads.
     From: comment on Gottfried Leibniz (Monadology [1716]) by Daniel Garber - Leibniz:Body,Substance,Monad 9
     A reaction: Leibniz was always going to hit the interaction problem, as soon as he started giving an increasingly spiritual account of what a substance, and hence marginalising the 'force' which had held centre-stage earlier on. Presumably they are 'parallel'.
Changes in a monad come from an internal principle, and the diversity within its substance [Leibniz]
     Full Idea: A monad's natural changes come from an internal principle, ...but there must be diversity in that which changes, which produces the specification and variety of substances.
     From: Gottfried Leibniz (Monadology [1716], §11-12)
     A reaction: You don't have to like monads to like this generalisation (and Perkins says Leibniz had a genius for generalisations). Metaphysics must give an account of change. Succeeding time-slices etc explain nothing. Principle and substance must meet.
A 'monad' has basic perception and appetite; a 'soul' has distinct perception and memory [Leibniz]
     Full Idea: The general name 'monad' or 'entelechy' may suffice for those substances which have nothing but perception and appetition; the name 'souls' may be reserved for those having perception that is more distinct and accompanied by memory.
     From: Gottfried Leibniz (Monadology [1716], §19)
     A reaction: It is basic to the study of Leibniz that you don't think monads are full-blown consciousnesses. He isn't really a panpsychist, because the level of mental activity is so minimal. There seem to be degrees of monadhood.
9. Objects / B. Unity of Objects / 2. Substance / e. Substance critique
If a substance is just a thing that has properties, it seems to be a characterless non-entity [Leibniz, by Macdonald,C]
     Full Idea: For Leibniz, to distinguish between a substance and its properties in order to provide a thing or entity in which properties can inhere leads necessarily to the absurd conclusion that the substance itself must be a truly characterless non-entity.
     From: report of Gottfried Leibniz (Monadology [1716]) by Cynthia Macdonald - Varieties of Things Ch.3
     A reaction: This is obviously one of the basic thoughts in any discussion of substances. It is why physicists ignore them, and Leibniz opted for a 'bundle' theory. But the alternative seems daft too - free-floating properties, hooked onto one another.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
There must be some internal difference between any two beings in nature [Leibniz]
     Full Idea: There are never two beings in nature that are perfectly alike, two beings in which it is not possible to discover an internal difference, that is, one founded on an intrinsic denomination.
     From: Gottfried Leibniz (Monadology [1716], §09)
     A reaction: From this it follows that if two things really are indiscernible, then we must say that they are one thing. He says monads all differ from one another. People certainly do. Leibniz must say this of electrons. How can he know this?
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Truths of reason are known by analysis, and are necessary; facts are contingent, and their opposites possible [Leibniz]
     Full Idea: There are two kinds of truths: of reasoning and of facts. Truths of reasoning are necessary and their opposites impossible. Facts are contingent and their opposites possible. A necessary truth is known by analysis.
     From: Gottfried Leibniz (Monadology [1716], §33)
12. Knowledge Sources / A. A Priori Knowledge / 4. A Priori as Necessities
Mathematical analysis ends in primitive principles, which cannot be and need not be demonstrated [Leibniz]
     Full Idea: At the end of the analytical method in mathematics there are simple ideas of which no definition can be given. Moreover there are axioms and postulates, in short, primitive principles, which cannot be demonstrated and do not need demonstration.
     From: Gottfried Leibniz (Monadology [1716], §35)
     A reaction: My view is that we do not know such principles when we apprehend them in isolation. I would call them 'intuitions'. They only ascend to the status of knowledge when the mathematics is extended and derived from them, and found to work.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
We all expect the sun to rise tomorrow by experience, but astronomers expect it by reason [Leibniz]
     Full Idea: When we expect it to be day tomorrow, we all behave as empiricists, because until now it has always happened thus. The astronomer alone knows this by reason.
     From: Gottfried Leibniz (Monadology [1716], §28)
15. Nature of Minds / B. Features of Minds / 3. Privacy
Increase a conscious machine to the size of a mill - you still won't see perceptions in it [Leibniz]
     Full Idea: If a conscious machine were increased in size, one might enter it like a mill, but we should only see the parts impinging on one another; we should not see anything which would explain a perception.
     From: Gottfried Leibniz (Monadology [1716], §17)
     A reaction: A wonderful image for capturing a widely held intuition. It seems to motivate Colin McGinn's 'Mysterianism'. The trouble is Leibniz didn't think big/small enough. Down at the level of molecules it might become obvious what a perception is. 'Might'.
16. Persons / C. Self-Awareness / 2. Knowing the Self
We know the 'I' and its contents by abstraction from awareness of necessary truths [Leibniz]
     Full Idea: It is through the knowledge of necessary truths and through their abstraction that we rise to reflective acts, which enable us to think of that which is called "I" and enable us to consider that this or that is in us.
     From: Gottfried Leibniz (Monadology [1716], §30)
     A reaction: For Leibniz, necessary truth can only be known a priori. Sense experience won't reveal the self, as Hume observed. We evidently 'abstract' the idea of 'I' from the nature of a priori thought. Animals have no self (or morals) for this reason.
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
The true elements are atomic monads [Leibniz]
     Full Idea: Monads are the true atoms of nature and, in brief, the elements of things.
     From: Gottfried Leibniz (Monadology [1716], (opening)), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 2
     A reaction: Thus in one sentence Leibniz gives us a theory of natural elements, and an account of atoms. This kind of speculation got metaphysics a bad name when science unravelled a more accurate picture. The bones must be picked out of Leibniz.
28. God / A. Divine Nature / 3. Divine Perfections
This is the most perfect possible universe, in its combination of variety with order [Leibniz]
     Full Idea: From all the possible universes God chooses this one to obtain as much variety as possible, but with the greatest order possible; that is, it is the means of obtaining the greatest perfection possible.
     From: Gottfried Leibniz (Monadology [1716], §58)
28. God / B. Proving God / 2. Proofs of Reason / a. Ontological Proof
God alone (the Necessary Being) has the privilege that He must exist if He is possible [Leibniz]
     Full Idea: God alone (or the Necessary Being) has the privilege that He must exist if He is possible.
     From: Gottfried Leibniz (Monadology [1716], §45)