Combining Texts

All the ideas for 'Function and Concept', 'The Emergence of Probability' and 'Remarks on the definition and nature of mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / b. Seventeenth century philosophy
Gassendi is the first great empiricist philosopher [Hacking]
     Full Idea: Gassendi is the first in the great line of empiricist philosophers that gradually came to dominate European thought.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.5)
     A reaction: Epicurus, of course, was clearly an empiricist. British readers should note that Gassendi was not British.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Frege thought traditional categories had psychological and linguistic impurities [Frege, by Rumfitt]
     Full Idea: Frege rejected the traditional categories as importing psychological and linguistic impurities into logic.
     From: report of Gottlob Frege (Function and Concept [1891]) by Ian Rumfitt - The Boundary Stones of Thought 1.2
     A reaction: Resisting such impurities is the main motivation for making logic entirely symbolic, but it doesn't follow that the traditional categories have to be dropped.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
First-level functions have objects as arguments; second-level functions take functions as arguments [Frege]
     Full Idea: Just as functions are fundamentally different from objects, so also functions whose arguments are and must be functions are fundamentally different from functions whose arguments are objects. The latter are first-level, the former second-level, functions.
     From: Gottlob Frege (Function and Concept [1891], p.38)
     A reaction: In 1884 he called it 'second-order'. This is the standard distinction between first- and second-order logic. The first quantifies over objects, the second over intensional entities such as properties and propositions.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
Relations are functions with two arguments [Frege]
     Full Idea: Functions of one argument are concepts; functions of two arguments are relations.
     From: Gottlob Frege (Function and Concept [1891], p.39)
     A reaction: Nowadays we would say 'two or more'. Another interesting move in the aim of analytic philosophy to reduce the puzzling features of the world to mathematical logic. There is, of course, rather more to some relations than being two-argument functions.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
To study formal systems, look at the whole thing, and not just how it is constructed in steps [Curry]
     Full Idea: In the study of formal systems we do not confine ourselves to the derivation of elementary propositions step by step. Rather we take the system, defined by its primitive frame, as datum, and then study it by any means at our command.
     From: Haskell B. Curry (Remarks on the definition and nature of mathematics [1954], 'The formalist')
     A reaction: This is what may potentially lead to an essentialist view of such things. Focusing on bricks gives formalism, focusing on buildings gives essentialism.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
It is untenable that mathematics is general physical truths, because it needs infinity [Curry]
     Full Idea: According to realism, mathematical propositions express the most general properties of our physical environment. This is the primitive view of mathematics, yet on account of the essential role played by infinity in mathematics, it is untenable today.
     From: Haskell B. Curry (Remarks on the definition and nature of mathematics [1954], 'The problem')
     A reaction: I resist this view, because Curry's view seems to imply a mad metaphysics. Hilbert resisted the role of the infinite in essential mathematics. If the physical world includes its possibilities, that might do the job. Hellman on structuralism?
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic is a development of logic, so arithmetical symbolism must expand into logical symbolism [Frege]
     Full Idea: I am of the opinion that arithmetic is a further development of logic, which leads to the requirement that the symbolic language of arithmetic must be expanded into a logical symbolism.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: This may the the one key idea at the heart of modern analytic philosophy (even though logicism may be a total mistake!). Logic and arithmetical foundations become the master of ontology, instead of the servant. The jury is out on the whole enterprise.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Saying mathematics is logic is merely replacing one undefined term by another [Curry]
     Full Idea: To say that mathematics is logic is merely to replace one undefined term by another.
     From: Haskell B. Curry (Remarks on the definition and nature of mathematics [1954], 'Mathematics')
7. Existence / A. Nature of Existence / 6. Criterion for Existence
Frege takes the existence of horses to be part of their concept [Frege, by Sommers]
     Full Idea: Frege regarded the existence of horses as a property of the concept 'horse'.
     From: report of Gottlob Frege (Function and Concept [1891]) by Fred Sommers - Intellectual Autobiography 'Realism'
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Frege allows either too few properties (as extensions) or too many (as predicates) [Mellor/Oliver on Frege]
     Full Idea: Frege's theory of properties (which he calls 'concepts') yields too few properties, by identifying coextensive properties, and also too many, by letting every predicate express a property.
     From: comment on Gottlob Frege (Function and Concept [1891]) by DH Mellor / A Oliver - Introduction to 'Properties' §2
     A reaction: Seems right; one extension may have two properties (have heart/kidneys), two predicates might express the same property. 'Cutting nature at the joints' covers properties as well as objects.
9. Objects / A. Existence of Objects / 3. Objects in Thought
The concept 'object' is too simple for analysis; unlike a function, it is an expression with no empty place [Frege]
     Full Idea: I regard a regular definition of 'object' as impossible, since it is too simple to admit of logical analysis. Briefly: an object is anything that is not a function, so that an expression for it does not contain any empty place.
     From: Gottlob Frege (Function and Concept [1891], p.32)
     A reaction: Here is the core of the programme for deriving our ontology from our logic and language, followed through by Russell and Quine. Once we extend objects beyond the physical, it becomes incredibly hard to individuate them.
10. Modality / B. Possibility / 6. Probability
Probability was fully explained between 1654 and 1812 [Hacking]
     Full Idea: There is hardly any history of probability to record before Pascal (1654), and the whole subject is very well understood after Laplace (1812).
     From: Ian Hacking (The Emergence of Probability [1975], Ch.1)
     A reaction: An interesting little pointer on the question of whether the human race is close to exhausting all the available intellectual problems. What then?
Probability is statistical (behaviour of chance devices) or epistemological (belief based on evidence) [Hacking]
     Full Idea: Probability has two aspects: the degree of belief warranted by evidence, and the tendency displayed by some chance device to produce stable relative frequencies. These are the epistemological and statistical aspects of the subject.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.1)
     A reaction: The most basic distinction in the subject. Later (p.124) he suggests that the statistical form (known as 'aleatory' probability) is de re, and the other is de dicto.
Epistemological probability based either on logical implications or coherent judgments [Hacking]
     Full Idea: Epistemological probability is torn between Keynes etc saying it depends on the strength of logical implication, and Ramsey etc saying it is personal judgement which is subject to strong rules of internal coherence.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.2)
     A reaction: See Idea 7449 for epistemological probability. My immediate intuition is that the Ramsey approach sounds much more plausible. In real life there are too many fine-grained particulars involved for straight implication to settle a probability.
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In the medieval view, only deduction counted as true evidence [Hacking]
     Full Idea: In the medieval view, evidence short of deduction was not really evidence at all.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.3)
     A reaction: Hacking says the modern concept of evidence comes with probability in the 17th century. That might make it one of the most important ideas ever thought of, allowing us to abandon certainties and live our lives in a more questioning way.
Formerly evidence came from people; the new idea was that things provided evidence [Hacking]
     Full Idea: In the medieval view, people provided the evidence of testimony and of authority. What was lacking was the seventeenth century idea of the evidence provided by things.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.4)
     A reaction: A most intriguing distinction, which seems to imply a huge shift in world-view. The culmination of this is Peirce's pragmatism, in Idea 6948, of which I strongly approve.
14. Science / A. Basis of Science / 3. Experiment
An experiment is a test, or an adventure, or a diagnosis, or a dissection [Hacking, by PG]
     Full Idea: An experiment is a test (if T, then E implies R, so try E, and if R follows, T seems right), an adventure (no theory, but try things), a diagnosis (reading the signs), or a dissection (taking apart).
     From: report of Ian Hacking (The Emergence of Probability [1975], Ch.4) by PG - Db (ideas)
     A reaction: A nice analysis. The Greeks did diagnosis, then the alchemists tried adventures, then Vesalius began dissections, then the followers of Bacon concentrated on the test, setting up controlled conditions. 'If you don't believe it, try it yourself'.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Follow maths for necessary truths, and jurisprudence for contingent truths [Hacking]
     Full Idea: Mathematics is the model for reasoning about necessary truths, but jurisprudence must be our model when we deliberate about contingencies.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.10)
     A reaction: Interesting. Certainly huge thinking, especially since the Romans, has gone into the law, and creating rules of evidence. Maybe all philosophers should study law and mathematics?
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
Concepts are the ontological counterparts of predicative expressions [Frege, by George/Velleman]
     Full Idea: Concepts, for Frege, are the ontological counterparts of predicative expressions.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: That sounds awfully like what many philosophers call 'universals'. Frege, as a platonist (at least about numbers), I would take to be in sympathy with that. At least we can say that concepts seem to be properties.
An assertion about the concept 'horse' must indirectly speak of an object [Frege, by Hale]
     Full Idea: Frege had a notorious difficulty over the concept 'horse', when he suggests that if we wish to assert something about a concept, we are obliged to proceed indirectly by speaking of an object that represents it.
     From: report of Gottlob Frege (Function and Concept [1891], Ch.2.II) by Bob Hale - Abstract Objects
     A reaction: This sounds like the thin end of a wedge. The great champion of objects is forced to accept them here as a façon de parler, when elsewhere they have ontological status.
A concept is a function whose value is always a truth-value [Frege]
     Full Idea: A concept in logic is closely connected with what we call a function. Indeed, we may say at once: a concept is a function whose value is always a truth-value. ..I give the name 'function' to what is meant by the 'unsaturated' part.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: So a function becomes a concept when the variable takes a value. Problems arise when the value is vague, or the truth-value is indeterminable.
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Unlike objects, concepts are inherently incomplete [Frege, by George/Velleman]
     Full Idea: For Frege, concepts differ from objects in being inherently incomplete in nature.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: This is because they are 'unsaturated', needing a quantified variable to complete the sentence. This could be a pointer towards Quine's view of properties, as simply an intrinsic feature of predication about objects, with no separate identity.
19. Language / B. Reference / 5. Speaker's Reference
I may regard a thought about Phosphorus as true, and the same thought about Hesperus as false [Frege]
     Full Idea: From sameness of meaning there does not follow sameness of thought expressed. A fact about the Morning Star may express something different from a fact about the Evening Star, as someone may regard one as true and the other false.
     From: Gottlob Frege (Function and Concept [1891], p.14)
     A reaction: This all gets clearer if we distinguish internalist and externalist theories of content. Why take sides on this? Why not just ask 'what is in the speaker's head?', 'what does the sentence mean in the community?', and 'what is the corresponding situation?'
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The Ontological Argument fallaciously treats existence as a first-level concept [Frege]
     Full Idea: The ontological proof of God's existence suffers from the fallacy of treating existence as a first-level concept.
     From: Gottlob Frege (Function and Concept [1891], p.38 n)
     A reaction: [See Idea 8490 for first- and second-order functions] This is usually summarised as the idea that existence is a quantifier rather than a predicate.