Combining Texts

All the ideas for 'Function and Concept', 'Scientific Explanation' and 'Infinity: Quest to Think the Unthinkable'

unexpand these ideas     |    start again     |     specify just one area for these texts


34 ideas

2. Reason / F. Fallacies / 4. Circularity
One sort of circularity presupposes a premise, the other presupposes a rule being used [Braithwaite, by Devitt]
     Full Idea: An argument is 'premise-circular' if it aims to establish a conclusion that is assumed as a premise of that very argument. An argument is 'rule-circular' if it aims to establish a conclusion that asserts the goodness of the rule used in that argument.
     From: report of R.B. Braithwaite (Scientific Explanation [1953], p.274-8) by Michael Devitt - There is no a Priori §2
     A reaction: Rule circularity is the sort of thing Quine is always objecting to, but such circularities may be unavoidable, and even totally benign. All the good things in life form a mutually supporting team.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Frege thought traditional categories had psychological and linguistic impurities [Frege, by Rumfitt]
     Full Idea: Frege rejected the traditional categories as importing psychological and linguistic impurities into logic.
     From: report of Gottlob Frege (Function and Concept [1891]) by Ian Rumfitt - The Boundary Stones of Thought 1.2
     A reaction: Resisting such impurities is the main motivation for making logic entirely symbolic, but it doesn't follow that the traditional categories have to be dropped.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
     Full Idea: Set theory made a closer study of infinity possible.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Any set can always generate a larger set - its powerset, of subsets [Clegg]
     Full Idea: The idea of the 'power set' means that it is always possible to generate a bigger one using only the elements of that set, namely the set of all its subsets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
     Full Idea: Axiom of Extension: Two sets are equal if and only if they have the same elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
     Full Idea: Axiom of Pairing: For any two sets there exists a set to which they both belong. So you can make a set out of two other sets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
     Full Idea: Axiom of Unions: For every collection of sets there exists a set that contains all the elements that belong to at least one of the sets in the collection.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
     Full Idea: Axiom of Powers: For each set there exists a collection of sets that contains amongst its elements all the subsets of the given set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: Obviously this must include the whole of the base set (i.e. not just 'proper' subsets), otherwise the new set would just be a duplicate of the base set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
     Full Idea: Axiom of Existence: there exists at least one set. This may be the empty set, but you need to start with something.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
     Full Idea: Axiom of Specification: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true. So the concept 'number is even' produces a set from the integers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: What if the condition won't apply to the set? 'Number is even' presumably won't produce a set if it is applied to a set of non-numbers.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
First-level functions have objects as arguments; second-level functions take functions as arguments [Frege]
     Full Idea: Just as functions are fundamentally different from objects, so also functions whose arguments are and must be functions are fundamentally different from functions whose arguments are objects. The latter are first-level, the former second-level, functions.
     From: Gottlob Frege (Function and Concept [1891], p.38)
     A reaction: In 1884 he called it 'second-order'. This is the standard distinction between first- and second-order logic. The first quantifies over objects, the second over intensional entities such as properties and propositions.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
Relations are functions with two arguments [Frege]
     Full Idea: Functions of one argument are concepts; functions of two arguments are relations.
     From: Gottlob Frege (Function and Concept [1891], p.39)
     A reaction: Nowadays we would say 'two or more'. Another interesting move in the aim of analytic philosophy to reduce the puzzling features of the world to mathematical logic. There is, of course, rather more to some relations than being two-argument functions.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
     Full Idea: Three views of mathematics: 'pure' mathematics, where it doesn't matter if it could ever have any application; 'real' mathematics, where every concept must be physically grounded; and 'applied' mathematics, using the non-real if the results are real.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.17)
     A reaction: Very helpful. No one can deny the activities of 'pure' mathematics, but I think it is undeniable that the origins of the subject are 'real' (rather than platonic). We do economics by pretending there are concepts like the 'average family'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
     Full Idea: The realisation that brought 'i' into the toolkit of physicists and engineers was that you could extend the 'number line' into a new dimension, with an imaginary number axis at right angles to it. ...We now have a 'number plane'.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.12)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
     Full Idea: It is a chicken-and-egg problem, whether the lack of zero forced forced classical mathematicians to rely mostly on a geometric approach to mathematics, or the geometric approach made 0 a meaningless concept, but the two remain strongly tied together.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
     Full Idea: As far as Kronecker was concerned, Cantor had built a whole structure on the irrational numbers, and so that structure had no foundation at all.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic is a development of logic, so arithmetical symbolism must expand into logical symbolism [Frege]
     Full Idea: I am of the opinion that arithmetic is a further development of logic, which leads to the requirement that the symbolic language of arithmetic must be expanded into a logical symbolism.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: This may the the one key idea at the heart of modern analytic philosophy (even though logicism may be a total mistake!). Logic and arithmetical foundations become the master of ontology, instead of the servant. The jury is out on the whole enterprise.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
Frege takes the existence of horses to be part of their concept [Frege, by Sommers]
     Full Idea: Frege regarded the existence of horses as a property of the concept 'horse'.
     From: report of Gottlob Frege (Function and Concept [1891]) by Fred Sommers - Intellectual Autobiography 'Realism'
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Frege allows either too few properties (as extensions) or too many (as predicates) [Mellor/Oliver on Frege]
     Full Idea: Frege's theory of properties (which he calls 'concepts') yields too few properties, by identifying coextensive properties, and also too many, by letting every predicate express a property.
     From: comment on Gottlob Frege (Function and Concept [1891]) by DH Mellor / A Oliver - Introduction to 'Properties' §2
     A reaction: Seems right; one extension may have two properties (have heart/kidneys), two predicates might express the same property. 'Cutting nature at the joints' covers properties as well as objects.
9. Objects / A. Existence of Objects / 3. Objects in Thought
The concept 'object' is too simple for analysis; unlike a function, it is an expression with no empty place [Frege]
     Full Idea: I regard a regular definition of 'object' as impossible, since it is too simple to admit of logical analysis. Briefly: an object is anything that is not a function, so that an expression for it does not contain any empty place.
     From: Gottlob Frege (Function and Concept [1891], p.32)
     A reaction: Here is the core of the programme for deriving our ontology from our logic and language, followed through by Russell and Quine. Once we extend objects beyond the physical, it becomes incredibly hard to individuate them.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
Concepts are the ontological counterparts of predicative expressions [Frege, by George/Velleman]
     Full Idea: Concepts, for Frege, are the ontological counterparts of predicative expressions.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: That sounds awfully like what many philosophers call 'universals'. Frege, as a platonist (at least about numbers), I would take to be in sympathy with that. At least we can say that concepts seem to be properties.
An assertion about the concept 'horse' must indirectly speak of an object [Frege, by Hale]
     Full Idea: Frege had a notorious difficulty over the concept 'horse', when he suggests that if we wish to assert something about a concept, we are obliged to proceed indirectly by speaking of an object that represents it.
     From: report of Gottlob Frege (Function and Concept [1891], Ch.2.II) by Bob Hale - Abstract Objects
     A reaction: This sounds like the thin end of a wedge. The great champion of objects is forced to accept them here as a façon de parler, when elsewhere they have ontological status.
A concept is a function whose value is always a truth-value [Frege]
     Full Idea: A concept in logic is closely connected with what we call a function. Indeed, we may say at once: a concept is a function whose value is always a truth-value. ..I give the name 'function' to what is meant by the 'unsaturated' part.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: So a function becomes a concept when the variable takes a value. Problems arise when the value is vague, or the truth-value is indeterminable.
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Unlike objects, concepts are inherently incomplete [Frege, by George/Velleman]
     Full Idea: For Frege, concepts differ from objects in being inherently incomplete in nature.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: This is because they are 'unsaturated', needing a quantified variable to complete the sentence. This could be a pointer towards Quine's view of properties, as simply an intrinsic feature of predication about objects, with no separate identity.
19. Language / B. Reference / 5. Speaker's Reference
I may regard a thought about Phosphorus as true, and the same thought about Hesperus as false [Frege]
     Full Idea: From sameness of meaning there does not follow sameness of thought expressed. A fact about the Morning Star may express something different from a fact about the Evening Star, as someone may regard one as true and the other false.
     From: Gottlob Frege (Function and Concept [1891], p.14)
     A reaction: This all gets clearer if we distinguish internalist and externalist theories of content. Why take sides on this? Why not just ask 'what is in the speaker's head?', 'what does the sentence mean in the community?', and 'what is the corresponding situation?'
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The Ontological Argument fallaciously treats existence as a first-level concept [Frege]
     Full Idea: The ontological proof of God's existence suffers from the fallacy of treating existence as a first-level concept.
     From: Gottlob Frege (Function and Concept [1891], p.38 n)
     A reaction: [See Idea 8490 for first- and second-order functions] This is usually summarised as the idea that existence is a quantifier rather than a predicate.