Combining Texts

All the ideas for 'Function and Concept', 'Philosophy of Science: Very Short Intro (2nd ed)' and 'What Price Bivalence?'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Frege thought traditional categories had psychological and linguistic impurities [Frege, by Rumfitt]
     Full Idea: Frege rejected the traditional categories as importing psychological and linguistic impurities into logic.
     From: report of Gottlob Frege (Function and Concept [1891]) by Ian Rumfitt - The Boundary Stones of Thought 1.2
     A reaction: Resisting such impurities is the main motivation for making logic entirely symbolic, but it doesn't follow that the traditional categories have to be dropped.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Bivalence applies not just to sentences, but that general terms are true or false of each object [Quine]
     Full Idea: It is in the spirit of bivalence not just to treat each closed sentence as true or false; as Frege stressed, each general term must be definitely true or false of each object, specificiable or not.
     From: Willard Quine (What Price Bivalence? [1981], p.36)
     A reaction: But note that this is only the 'spirit' of the thing. If you had (as I do) doubts about whether predicates actually refer to genuine 'properties', you may want to stick to the whole sentence view, and not be so fine-grained.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
First-level functions have objects as arguments; second-level functions take functions as arguments [Frege]
     Full Idea: Just as functions are fundamentally different from objects, so also functions whose arguments are and must be functions are fundamentally different from functions whose arguments are objects. The latter are first-level, the former second-level, functions.
     From: Gottlob Frege (Function and Concept [1891], p.38)
     A reaction: In 1884 he called it 'second-order'. This is the standard distinction between first- and second-order logic. The first quantifies over objects, the second over intensional entities such as properties and propositions.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
Relations are functions with two arguments [Frege]
     Full Idea: Functions of one argument are concepts; functions of two arguments are relations.
     From: Gottlob Frege (Function and Concept [1891], p.39)
     A reaction: Nowadays we would say 'two or more'. Another interesting move in the aim of analytic philosophy to reduce the puzzling features of the world to mathematical logic. There is, of course, rather more to some relations than being two-argument functions.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic is a development of logic, so arithmetical symbolism must expand into logical symbolism [Frege]
     Full Idea: I am of the opinion that arithmetic is a further development of logic, which leads to the requirement that the symbolic language of arithmetic must be expanded into a logical symbolism.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: This may the the one key idea at the heart of modern analytic philosophy (even though logicism may be a total mistake!). Logic and arithmetical foundations become the master of ontology, instead of the servant. The jury is out on the whole enterprise.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
Frege takes the existence of horses to be part of their concept [Frege, by Sommers]
     Full Idea: Frege regarded the existence of horses as a property of the concept 'horse'.
     From: report of Gottlob Frege (Function and Concept [1891]) by Fred Sommers - Intellectual Autobiography 'Realism'
7. Existence / C. Structure of Existence / 2. Reduction
Multiple realisability is said to make reduction impossible [Okasha]
     Full Idea: Philosophers have often invoked multiple realisability to explain why psychology cannot be reduced to physics or chemistry, but in principle the explanation works for any higher-level science.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 3)
     A reaction: He gives the example of a 'cell' in biology, which can be implemented in all sorts of ways. Presumably that can be reduced to many sorts of physics, but not just to one sort. The high level contains patterns that vanish at the low level.
7. Existence / D. Theories of Reality / 10. Vagueness / d. Vagueness as linguistic
Terms learned by ostension tend to be vague, because that must be quick and unrefined [Quine]
     Full Idea: A term is apt to be vague if it is to be learned by ostension, since its applicability must admit of being judged on the spot and so cannot hinge of fine distinctions laboriously drawn.
     From: Willard Quine (What Price Bivalence? [1981], p.32)
     A reaction: [Quine cites C. Wright for this] Presumably precision can steadily increased by repeated ostension. After the first 'dog' it's pretty vague; after hundreds of them we are pretty clear about it. Long observation of borderline 'clouds' could do the same.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Frege allows either too few properties (as extensions) or too many (as predicates) [Mellor/Oliver on Frege]
     Full Idea: Frege's theory of properties (which he calls 'concepts') yields too few properties, by identifying coextensive properties, and also too many, by letting every predicate express a property.
     From: comment on Gottlob Frege (Function and Concept [1891]) by DH Mellor / A Oliver - Introduction to 'Properties' §2
     A reaction: Seems right; one extension may have two properties (have heart/kidneys), two predicates might express the same property. 'Cutting nature at the joints' covers properties as well as objects.
9. Objects / A. Existence of Objects / 3. Objects in Thought
The concept 'object' is too simple for analysis; unlike a function, it is an expression with no empty place [Frege]
     Full Idea: I regard a regular definition of 'object' as impossible, since it is too simple to admit of logical analysis. Briefly: an object is anything that is not a function, so that an expression for it does not contain any empty place.
     From: Gottlob Frege (Function and Concept [1891], p.32)
     A reaction: Here is the core of the programme for deriving our ontology from our logic and language, followed through by Russell and Quine. Once we extend objects beyond the physical, it becomes incredibly hard to individuate them.
14. Science / A. Basis of Science / 3. Experiment
Randomised Control Trials have a treatment and a control group, chosen at random [Okasha]
     Full Idea: In the Randomised Controlled Trial for a new drug, patients are divided at random into a treatment group who receive the drug, and a control group who do not. Randomisation is important to eliminate confounding factors.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: [compressed] Devised in the 1930s, and a major breakthrough in methodology for that kind of trial. Psychologists use the method all the time. Some theorists say it is the only reliable method.
Not all sciences are experimental; astronomy relies on careful observation [Okasha]
     Full Idea: Not all sciences are experimental - astronomers obviously cannot do experiments on the heavens, but have to content themselves with careful observation instead.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: Biology too. Psychology tries hard to be experimental, but I doubt whether the main theories emerge from experiments.
14. Science / A. Basis of Science / 6. Falsification
The discoverers of Neptune didn't change their theory because of an anomaly [Okasha]
     Full Idea: Adams and Leverrier began with Newton's theory of gravity, which made an incorrect prediction about the orbit of Uranus. They explained away the conflicting observations by postulating a new planet, Neptune.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: The falsificationists can say that the anomalous observation did not falsify the theory, because they didn't know quite what they were observing. It was not in fact an anomaly for Newtonian theory at all.
Science mostly aims at confirming theories, rather than falsifying them [Okasha]
     Full Idea: The goal of science is not solely to refute theories, but also to determine which theories are true (or probably true). When a scientist collects data …they are trying to show that their own theory is true.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This is the aim of 'accommodation' to a wide set of data, rather than prediction or refutation.
14. Science / B. Scientific Theories / 1. Scientific Theory
Theories with unobservables are underdetermined by the evidence [Okasha]
     Full Idea: According to anti-realists, scientific theories which posit unobservable entities are underdetermined by the empirical data - there will always be a number of competing theories which can account for the data equally well.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 4)
     A reaction: The fancy version is Putnam's model theoretic argument, explored by Tim Button. The reply, apparently, is that there are other criteria for theory choice, apart from the data. And we don't have to actually observe everything in a theory.
14. Science / B. Scientific Theories / 5. Commensurability
Two things can't be incompatible if they are incommensurable [Okasha]
     Full Idea: If two things are incommensurable they cannot be incompatible.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 5)
     A reaction: Kuhn had claimed that two rival theories are incompatible, which forces the paradigm shift. He can't stop the slide off into total relativism. The point is there cannot be a conflict if there cannot even be a comparison.
14. Science / C. Induction / 1. Induction
Induction is inferences from examined to unexamined instances of a given kind [Okasha]
     Full Idea: Some philosophers use 'inductive' to just mean not deductive, …but we reserve it for inferences from examined to unexamined instances of a given kind.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The instances must at least be comparable. Must you know the kind before you start? Surely you can examine a sequence of things, trying to decide whether or not they are of one kind? Is checking the uniformity of a kind induction?
14. Science / C. Induction / 6. Bayes's Theorem
If the rules only concern changes of belief, and not the starting point, absurd views can look ratiional [Okasha]
     Full Idea: If the only objective constraints concern how we should change our credences, but what our initial credences should be is entirely subjective, then individuals with very bizarre opinions about the world will count as perfectly rational.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The important rationality has to be the assessement of a diverse batch of evidence, for which there can never be any rules or mathematics.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
Concepts are the ontological counterparts of predicative expressions [Frege, by George/Velleman]
     Full Idea: Concepts, for Frege, are the ontological counterparts of predicative expressions.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: That sounds awfully like what many philosophers call 'universals'. Frege, as a platonist (at least about numbers), I would take to be in sympathy with that. At least we can say that concepts seem to be properties.
An assertion about the concept 'horse' must indirectly speak of an object [Frege, by Hale]
     Full Idea: Frege had a notorious difficulty over the concept 'horse', when he suggests that if we wish to assert something about a concept, we are obliged to proceed indirectly by speaking of an object that represents it.
     From: report of Gottlob Frege (Function and Concept [1891], Ch.2.II) by Bob Hale - Abstract Objects
     A reaction: This sounds like the thin end of a wedge. The great champion of objects is forced to accept them here as a façon de parler, when elsewhere they have ontological status.
A concept is a function whose value is always a truth-value [Frege]
     Full Idea: A concept in logic is closely connected with what we call a function. Indeed, we may say at once: a concept is a function whose value is always a truth-value. ..I give the name 'function' to what is meant by the 'unsaturated' part.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: So a function becomes a concept when the variable takes a value. Problems arise when the value is vague, or the truth-value is indeterminable.
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Unlike objects, concepts are inherently incomplete [Frege, by George/Velleman]
     Full Idea: For Frege, concepts differ from objects in being inherently incomplete in nature.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: This is because they are 'unsaturated', needing a quantified variable to complete the sentence. This could be a pointer towards Quine's view of properties, as simply an intrinsic feature of predication about objects, with no separate identity.
19. Language / B. Reference / 5. Speaker's Reference
I may regard a thought about Phosphorus as true, and the same thought about Hesperus as false [Frege]
     Full Idea: From sameness of meaning there does not follow sameness of thought expressed. A fact about the Morning Star may express something different from a fact about the Evening Star, as someone may regard one as true and the other false.
     From: Gottlob Frege (Function and Concept [1891], p.14)
     A reaction: This all gets clearer if we distinguish internalist and externalist theories of content. Why take sides on this? Why not just ask 'what is in the speaker's head?', 'what does the sentence mean in the community?', and 'what is the corresponding situation?'
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Galileo refuted the Aristotelian theory that heavier objects fall faster [Okasha]
     Full Idea: Galileo's most enduring contribution lay in mechanics, where he refuted the Aristotelian theory that heavier bodies fall faster than lighter.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This must the first idea in the theory of mechanics, allowing mathematical treatment and accurate comparisons.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The Ontological Argument fallaciously treats existence as a first-level concept [Frege]
     Full Idea: The ontological proof of God's existence suffers from the fallacy of treating existence as a first-level concept.
     From: Gottlob Frege (Function and Concept [1891], p.38 n)
     A reaction: [See Idea 8490 for first- and second-order functions] This is usually summarised as the idea that existence is a quantifier rather than a predicate.