Combining Texts

All the ideas for 'Function and Concept', 'Logical Consequence' and 'Modal and Anti-Luck Epistemology'

unexpand these ideas     |    start again     |     specify just one area for these texts


23 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Frege thought traditional categories had psychological and linguistic impurities [Frege, by Rumfitt]
     Full Idea: Frege rejected the traditional categories as importing psychological and linguistic impurities into logic.
     From: report of Gottlob Frege (Function and Concept [1891]) by Ian Rumfitt - The Boundary Stones of Thought 1.2
     A reaction: Resisting such impurities is the main motivation for making logic entirely symbolic, but it doesn't follow that the traditional categories have to be dropped.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Validity is explained as truth in all models, because that relies on the logical terms [McGee]
     Full Idea: A model of a language assigns values to non-logical terms. If a sentence is true in every model, its truth doesn't depend on those non-logical terms. Hence the validity of an argument comes from its logical form. Thus models explain logical validity.
     From: Vann McGee (Logical Consequence [2014], 4)
     A reaction: [compressed] Thus you get a rigorous account of logical validity by only allowing the rigorous input of model theory. This is the modern strategy of analytic philosophy. But is 'it's red so it's coloured' logically valid?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Natural language includes connectives like 'because' which are not truth-functional [McGee]
     Full Idea: Natural language includes connectives that are not truth-functional. In order for 'p because q' to be true, both p and q have to be true, but knowing the simpler sentences are true doesn't determine whether the larger sentence is true.
     From: Vann McGee (Logical Consequence [2014], 2)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
First-level functions have objects as arguments; second-level functions take functions as arguments [Frege]
     Full Idea: Just as functions are fundamentally different from objects, so also functions whose arguments are and must be functions are fundamentally different from functions whose arguments are objects. The latter are first-level, the former second-level, functions.
     From: Gottlob Frege (Function and Concept [1891], p.38)
     A reaction: In 1884 he called it 'second-order'. This is the standard distinction between first- and second-order logic. The first quantifies over objects, the second over intensional entities such as properties and propositions.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
Relations are functions with two arguments [Frege]
     Full Idea: Functions of one argument are concepts; functions of two arguments are relations.
     From: Gottlob Frege (Function and Concept [1891], p.39)
     A reaction: Nowadays we would say 'two or more'. Another interesting move in the aim of analytic philosophy to reduce the puzzling features of the world to mathematical logic. There is, of course, rather more to some relations than being two-argument functions.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables need to range over more than collections of first-order objects [McGee]
     Full Idea: To get any advantage from moving to second-order logic, we need to assign to second-order variables a role different from merely ranging over collections made up of things the first-order variables range over.
     From: Vann McGee (Logical Consequence [2014], 7)
     A reaction: Thus it is exciting if they range over genuine properties, but not so exciting if you merely characterise those properties as sets of first-order objects. This idea leads into a discussion of plural quantification.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
An ontologically secure semantics for predicate calculus relies on sets [McGee]
     Full Idea: We can get a less ontologically perilous presentation of the semantics of the predicate calculus by using sets instead of concepts.
     From: Vann McGee (Logical Consequence [2014], 4)
     A reaction: The perilous versions rely on Fregean concepts, and notably Russell's 'concept that does not fall under itself'. The sets, of course, have to be ontologically secure, and so will involve the iterative conception, rather than naive set theory.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logically valid sentences are analytic truths which are just true because of their logical words [McGee]
     Full Idea: Logically valid sentences are a species of analytic sentence, being true not just in virtue of the meanings of their words, but true in virtue of the meanings of their logical words.
     From: Vann McGee (Logical Consequence [2014], 4)
     A reaction: A helpful link between logical truths and analytic truths, which had not struck me before.
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness theorems are uninformative, because they rely on soundness in their proofs [McGee]
     Full Idea: Soundness theorems are seldom very informative, since typically we use informally, in proving the theorem, the very same rules whose soundness we are attempting to establish.
     From: Vann McGee (Logical Consequence [2014], 5)
     A reaction: [He cites Quine 1935]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
The culmination of Euclidean geometry was axioms that made all models isomorphic [McGee]
     Full Idea: One of the culminating achievements of Euclidean geometry was categorical axiomatisations, that describe the geometric structure so completely that any two models of the axioms are isomorphic. The axioms are second-order.
     From: Vann McGee (Logical Consequence [2014], 7)
     A reaction: [He cites Veblen 1904 and Hilbert 1903] For most mathematicians, categorical axiomatisation is the best you can ever dream of (rather than a single true axiomatisation).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic is a development of logic, so arithmetical symbolism must expand into logical symbolism [Frege]
     Full Idea: I am of the opinion that arithmetic is a further development of logic, which leads to the requirement that the symbolic language of arithmetic must be expanded into a logical symbolism.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: This may the the one key idea at the heart of modern analytic philosophy (even though logicism may be a total mistake!). Logic and arithmetical foundations become the master of ontology, instead of the servant. The jury is out on the whole enterprise.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
Frege takes the existence of horses to be part of their concept [Frege, by Sommers]
     Full Idea: Frege regarded the existence of horses as a property of the concept 'horse'.
     From: report of Gottlob Frege (Function and Concept [1891]) by Fred Sommers - Intellectual Autobiography 'Realism'
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Frege allows either too few properties (as extensions) or too many (as predicates) [Mellor/Oliver on Frege]
     Full Idea: Frege's theory of properties (which he calls 'concepts') yields too few properties, by identifying coextensive properties, and also too many, by letting every predicate express a property.
     From: comment on Gottlob Frege (Function and Concept [1891]) by DH Mellor / A Oliver - Introduction to 'Properties' §2
     A reaction: Seems right; one extension may have two properties (have heart/kidneys), two predicates might express the same property. 'Cutting nature at the joints' covers properties as well as objects.
9. Objects / A. Existence of Objects / 3. Objects in Thought
The concept 'object' is too simple for analysis; unlike a function, it is an expression with no empty place [Frege]
     Full Idea: I regard a regular definition of 'object' as impossible, since it is too simple to admit of logical analysis. Briefly: an object is anything that is not a function, so that an expression for it does not contain any empty place.
     From: Gottlob Frege (Function and Concept [1891], p.32)
     A reaction: Here is the core of the programme for deriving our ontology from our logic and language, followed through by Russell and Quine. Once we extend objects beyond the physical, it becomes incredibly hard to individuate them.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
'Modal epistemology' demands a connection between the belief and facts in possible worlds [Black,T]
     Full Idea: In 'modal epistemologies' a belief counts as knowledge only if there is a modal connection - a connection not only to the actual world, but also to other non-actual possible worlds - between the belief and the facts of the matter.
     From: Tim Black (Modal and Anti-Luck Epistemology [2011], 1)
     A reaction: [Pritchard 2005 seems to be a source for this] This sounds to me a bit like Nozick's tracking or sensitivity theory. Nozick is, I suppose, diachronic (time must pass, for the tracking), where this theory is synchronic.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
Gettier and lottery cases seem to involve luck, meaning bad connection of beliefs to facts [Black,T]
     Full Idea: The protagonists in Gettier cases and in lottery cases fail to have knowledge because their beliefs are true simply as a matter of luck, where this means that their beliefs themselves are not appropriately connected to the facts.
     From: Tim Black (Modal and Anti-Luck Epistemology [2011], 1)
     A reaction: The lottery problem is you correctly believe 'my ticket won't win the lottery' even though you don't seem to actually know it won't. Is the Gettier problem simply the problem of lucky knowledge? 'Luck' is a rather vague concept.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
Concepts are the ontological counterparts of predicative expressions [Frege, by George/Velleman]
     Full Idea: Concepts, for Frege, are the ontological counterparts of predicative expressions.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: That sounds awfully like what many philosophers call 'universals'. Frege, as a platonist (at least about numbers), I would take to be in sympathy with that. At least we can say that concepts seem to be properties.
An assertion about the concept 'horse' must indirectly speak of an object [Frege, by Hale]
     Full Idea: Frege had a notorious difficulty over the concept 'horse', when he suggests that if we wish to assert something about a concept, we are obliged to proceed indirectly by speaking of an object that represents it.
     From: report of Gottlob Frege (Function and Concept [1891], Ch.2.II) by Bob Hale - Abstract Objects
     A reaction: This sounds like the thin end of a wedge. The great champion of objects is forced to accept them here as a façon de parler, when elsewhere they have ontological status.
A concept is a function whose value is always a truth-value [Frege]
     Full Idea: A concept in logic is closely connected with what we call a function. Indeed, we may say at once: a concept is a function whose value is always a truth-value. ..I give the name 'function' to what is meant by the 'unsaturated' part.
     From: Gottlob Frege (Function and Concept [1891], p.30)
     A reaction: So a function becomes a concept when the variable takes a value. Problems arise when the value is vague, or the truth-value is indeterminable.
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Unlike objects, concepts are inherently incomplete [Frege, by George/Velleman]
     Full Idea: For Frege, concepts differ from objects in being inherently incomplete in nature.
     From: report of Gottlob Frege (Function and Concept [1891]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.2
     A reaction: This is because they are 'unsaturated', needing a quantified variable to complete the sentence. This could be a pointer towards Quine's view of properties, as simply an intrinsic feature of predication about objects, with no separate identity.
19. Language / B. Reference / 5. Speaker's Reference
I may regard a thought about Phosphorus as true, and the same thought about Hesperus as false [Frege]
     Full Idea: From sameness of meaning there does not follow sameness of thought expressed. A fact about the Morning Star may express something different from a fact about the Evening Star, as someone may regard one as true and the other false.
     From: Gottlob Frege (Function and Concept [1891], p.14)
     A reaction: This all gets clearer if we distinguish internalist and externalist theories of content. Why take sides on this? Why not just ask 'what is in the speaker's head?', 'what does the sentence mean in the community?', and 'what is the corresponding situation?'
19. Language / F. Communication / 2. Assertion
A maxim claims that if we are allowed to assert a sentence, that means it must be true [McGee]
     Full Idea: If our linguistic conventions entitle us to assert a sentence, they thereby make it true, because of the maxim that 'truth is the norm of assertion'.
     From: Vann McGee (Logical Consequence [2014], 8)
     A reaction: You could only really deny that maxim if you had no belief at all in truth, but then you can assert anything you like (with full entitlement). Maybe you can assert anything you like as long as it doesn't upset anyone? Etc.
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
The Ontological Argument fallaciously treats existence as a first-level concept [Frege]
     Full Idea: The ontological proof of God's existence suffers from the fallacy of treating existence as a first-level concept.
     From: Gottlob Frege (Function and Concept [1891], p.38 n)
     A reaction: [See Idea 8490 for first- and second-order functions] This is usually summarised as the idea that existence is a quantifier rather than a predicate.