Combining Texts

All the ideas for 'Science and Method', 'Mathematical Truth' and 'Intuitionism and Formalism'

unexpand these ideas     |    start again     |     specify just one area for these texts


9 ideas

4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
Our dislike of contradiction in logic is a matter of psychology, not mathematics [Brouwer]
     Full Idea: Not to the mathematician, but to the psychologist, belongs the task of explaining why ...we are averse to so-called contradictory systems in which the negative as well as the positive of certain propositions are valid.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.79)
     A reaction: Was the turning point of Graham Priest's life the day he read this sentence? I don't agree. I take the principle of non-contradiction to be a highly generalised observation of how the world works (and Russell agrees with me).
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
     Full Idea: Most accounts of the concept of mathematical truth can be identified with serving one or another of either semantic theory (matching it to ordinary language), or with epistemology (meshing with a reasonable view) - always at the expense of the other.
     From: Paul Benacerraf (Mathematical Truth [1973], Intro)
     A reaction: The gist is that language pulls you towards platonism, and epistemology pulls you towards empiricism. He argues that the semantics must give ground. He's right.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
One geometry cannot be more true than another [Poincaré]
     Full Idea: One geometry cannot be more true than another; it can only be more convenient.
     From: Henri Poincaré (Science and Method [1908], p.65), quoted by Stewart Shapiro - Philosophy of Mathematics
     A reaction: This is the culminating view after new geometries were developed by tinkering with Euclid's parallels postulate.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Scientific laws largely rest on the results of counting and measuring [Brouwer]
     Full Idea: A large part of the natural laws introduced by science treat only of the mutual relations between the results of counting and measuring.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.77)
     A reaction: His point, I take it, is that the higher reaches of numbers have lost touch with the original point of the system. I now see the whole issue as just depending on conventions about the agreed extension of the word 'number'.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
     Full Idea: Benacerraf argues that realists about mathematical objects have a nice normal semantic but no epistemology, and anti-realists have a good epistemology but an unorthodox semantics.
     From: report of Paul Benacerraf (Mathematical Truth [1973]) by Mark Colyvan - Introduction to the Philosophy of Mathematics 1.2
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
     Full Idea: The principle defect of the standard (platonist) account of mathematical truth is that it appears to violate the requirement that our account be susceptible to integration into our over-all account of knowledge.
     From: Paul Benacerraf (Mathematical Truth [1973], III)
     A reaction: Unfortunately he goes on to defend a causal theory of justification (fashionable at that time, but implausible now). Nevertheless, his general point is well made. Your theory of what mathematics is had better make it knowable.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists only accept denumerable sets [Brouwer]
     Full Idea: The intuitionist recognises only the existence of denumerable sets.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: That takes you up to omega, but not beyond, presumably because it then loses sight of the original intuition of 'bare two-oneness' (Idea 12453). I sympathise, but the word 'number' has shifted its meaning a lot these days.
Neo-intuitionism abstracts from the reuniting of moments, to intuit bare two-oneness [Brouwer]
     Full Idea: Neo-intuitionism sees the falling apart of moments, reunited while remaining separated in time, as the fundamental phenomenon of human intellect, passing by abstracting to mathematical thinking, the intuition of bare two-oneness.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: [compressed] A famous and somewhat obscure idea. He goes on to say that this creates one and two, and all the finite ordinals.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Intuitonists in mathematics worried about unjustified assertion, as well as contradiction [Brouwer, by George/Velleman]
     Full Idea: The concern of mathematical intuitionists was that the use of certain forms of inference generates, not contradiction, but unjustified assertions.
     From: report of Luitzen E.J. Brouwer (Intuitionism and Formalism [1912]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems to be the real origin of the verificationist idea in the theory of meaning. It is a hugely revolutionary idea - that ideas are not only ruled out of court by contradiction, but that there are other criteria which should also be met.