Combining Texts

All the ideas for 'Science and Method', 'Causation' and 'Russell's Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
     Full Idea: Impredicative Definitions are definitions of an object by reference to the totality to which the object itself (and perhaps also things definable only in terms of that object) belong.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], n 13)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
     Full Idea: In the superior realist and simple theory of types, the place of the axiom of reducibility is not taken by the axiom of classes, Zermelo's Aussonderungsaxiom.
     From: report of Kurt Gödel (Russell's Mathematical Logic [1944], p.140-1) by Bernard Linsky - Russell's Metaphysical Logic 6.1 n3
     A reaction: This is Zermelo's Axiom of Separation, but that too is not an axiom of standard ZFC.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
     Full Idea: 'Mathematical Logic' is a precise and complete formulation of formal logic, and is both a section of mathematics covering classes, relations, symbols etc, and also a science prior to all others, with ideas and principles underlying all sciences.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.447)
     A reaction: He cites Leibniz as the ancestor. In this database it is referred to as 'theory of logic', as 'mathematical' seems to be simply misleading. The principles of the subject are standardly applied to mathematical themes.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
     Full Idea: One may, on good grounds, deny that reference to a totality necessarily implies reference to all single elements of it or, in other words, that 'all' means the same as an infinite logical conjunction.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.455)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
     Full Idea: In order to be sure that new expression can be translated into expressions not containing them, it is necessary to have a survey of all possible expressions, and this can be furnished only by syntactical considerations.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.448)
     A reaction: [compressed]
6. Mathematics / A. Nature of Mathematics / 2. Geometry
One geometry cannot be more true than another [Poincaré]
     Full Idea: One geometry cannot be more true than another; it can only be more convenient.
     From: Henri Poincaré (Science and Method [1908], p.65), quoted by Stewart Shapiro - Philosophy of Mathematics
     A reaction: This is the culminating view after new geometries were developed by tinkering with Euclid's parallels postulate.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
     Full Idea: The generalized Continuum Hypothesis says that there exists no cardinal number between the power of any arbitrary set and the power of the set of its subsets.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
     Full Idea: It has turned out that the solution of certain arithmetical problems requires the use of assumptions essentially transcending arithmetic.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.449)
     A reaction: A nice statement of the famous result, from the great man himself, in the plainest possible English.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
     Full Idea: Classes and concepts may be conceived of as real objects, ..and are as necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions, with neither case being about 'data'.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.456)
     A reaction: Note that while he thinks real objects are essential for mathematics, be may not be claiming the same thing for our knowledge of logic. If logic contains no objects, then how could mathematics be reduced to it, as in logicism?
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
     Full Idea: Impredicative definitions are admitted into ordinary mathematics.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
     A reaction: The issue is at what point in building an account of the foundations of mathematics (if there be such, see Putnam) these impure definitions should be ruled out.
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
Events are picked out by descriptions, and facts by whole sentences [Crane]
     Full Idea: Events are picked out using descriptions ('The death of Caesar'), while facts are picked out using whole sentences ('Caesar died').
     From: Tim Crane (Causation [1995], 1.4.2)
     A reaction: Useful, and interesting. He mentions that Kim's usage doesn't agree with this. For analysis purposes, this means that an event is a more minimal item than a fact, and many facts will contain events as components.
26. Natural Theory / C. Causation / 4. Naturalised causation
A cause has its effects in virtue of its properties [Crane]
     Full Idea: Some philosophers say that a cause has its effects in virtue of its properties.
     From: Tim Crane (Causation [1995], 1.4.2)
     A reaction: The trouble with this approach, I think, is that it encourages us to invent dubious properties, because every explanation of an effect will require one. Dormative properties, for example, are ascribed to sleeping pills.
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
The regularity theory explains a causal event by other items than the two that are involved [Crane]
     Full Idea: An unsatisfactory aspect of the regularity thesis is that it explains why this A caused this B in terms of facts about things other that this A and this B. But we want to know what it is about this A and this B that makes one the cause of the other?
     From: Tim Crane (Causation [1995], 1.3)
     A reaction: Well said. This is the failing of any attempt to define things by their relationships (e.g. functional definitions). Hume, of course, was only relying on regularity because when he focused on the actual A and B, they had no helpful experiences to offer.