Combining Texts

All the ideas for 'works', 'Logic in Mathematics' and 'Causation and Supervenience'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
Realism is the only philosophy of science that doesn't make the success of science a miracle [Putnam]
     Full Idea: Realism….is the only philosophy science which does not make the success of science a miracle.
     From: Hilary Putnam (works [1980]), quoted by Alexander Bird - Philosophy of Science Ch.4
     A reaction: This was from his earlier work; he became more pragmatist and anti-realist later. Personally I approve of the remark. The philosophy of science must certainly offer an explanation for its success. Truth seems the obvious explanation.
2. Reason / D. Definition / 3. Types of Definition
A 'constructive' (as opposed to 'analytic') definition creates a new sign [Frege]
     Full Idea: We construct a sense out of its constituents and introduce an entirely new sign to express this sense. This may be called a 'constructive definition', but we prefer to call it a 'definition' tout court. It contrasts with an 'analytic' definition.
     From: Gottlob Frege (Logic in Mathematics [1914], p.210)
     A reaction: An analytic definition is evidently a deconstruction of a past constructive definition. Fregean definition is a creative activity.
2. Reason / D. Definition / 10. Stipulative Definition
Frege suggested that mathematics should only accept stipulative definitions [Frege, by Gupta]
     Full Idea: Frege has defended the austere view that, in mathematics at least, only stipulative definitions should be countenanced.
     From: report of Gottlob Frege (Logic in Mathematics [1914]) by Anil Gupta - Definitions 1.3
     A reaction: This sounds intriguingly at odds with Frege's well-known platonism about numbers (as sets of equinumerous sets). It makes sense for other mathematical concepts.
2. Reason / E. Argument / 6. Conclusive Proof
We must be clear about every premise and every law used in a proof [Frege]
     Full Idea: It is so important, if we are to have a clear insight into what is going on, for us to be able to recognise the premises of every inference which occurs in a proof and the law of inference in accordance with which it takes place.
     From: Gottlob Frege (Logic in Mathematics [1914], p.212)
     A reaction: Teachers of logic like natural deduction, because it reduces everything to a few clear laws, which can be stated at each step.
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic not only proves things, but also reveals logical relations between them [Frege]
     Full Idea: A proof does not only serve to convince us of the truth of what is proved: it also serves to reveal logical relations between truths. Hence we find in Euclid proofs of truths that appear to stand in no need of proof because they are obvious without one.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
     A reaction: This is a key idea in Frege's philosophy, and a reason why he is the founder of modern analytic philosophy, with logic placed at the centre of the subject. I take the value of proofs to be raising questions, more than giving answers.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Does some mathematical reasoning (such as mathematical induction) not belong to logic? [Frege]
     Full Idea: Are there perhaps modes of inference peculiar to mathematics which …do not belong to logic? Here one may point to inference by mathematical induction from n to n+1.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: He replies that it looks as if induction can be reduced to general laws, and those can be reduced to logic.
The closest subject to logic is mathematics, which does little apart from drawing inferences [Frege]
     Full Idea: Mathematics has closer ties with logic than does almost any other discipline; for almost the entire activity of the mathematician consists in drawing inferences.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: The interesting question is who is in charge - the mathematician or the logician?
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
'Theorems' are both proved, and used in proofs [Frege]
     Full Idea: Usually a truth is only called a 'theorem' when it has not merely been obtained by inference, but is used in turn as a premise for a number of inferences in the science. ….Proofs use non-theorems, which only occur in that proof.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Tracing inference backwards closes in on a small set of axioms and postulates [Frege]
     Full Idea: We can trace the chains of inference backwards, …and the circle of theorems closes in more and more. ..We must eventually come to an end by arriving at truths can cannot be inferred, …which are the axioms and postulates.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204)
     A reaction: The rival (more modern) view is that that all theorems are equal in status, and axioms are selected for convenience.
The essence of mathematics is the kernel of primitive truths on which it rests [Frege]
     Full Idea: Science must endeavour to make the circle of unprovable primitive truths as small as possible, for the whole of mathematics is contained in this kernel. The essence of mathematics has to be defined by this kernel of truths.
     From: Gottlob Frege (Logic in Mathematics [1914], p.204-5)
     A reaction: [compressed] I will make use of this thought, by arguing that mathematics may be 'explained' by this kernel.
Axioms are truths which cannot be doubted, and for which no proof is needed [Frege]
     Full Idea: The axioms are theorems, but truths for which no proof can be given in our system, and no proof is needed. It follows from this that there are no false axioms, and we cannot accept a thought as an axiom if we are in doubt about its truth.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
     A reaction: He struggles to be as objective as possible, but has to concede that whether we can 'doubt' the axiom is one of the criteria.
A truth can be an axiom in one system and not in another [Frege]
     Full Idea: It is possible for a truth to be an axiom in one system and not in another.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
     A reaction: Frege aspired to one huge single system, so this is a begrudging concession, one which modern thinkers would probably take for granted.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
To create order in mathematics we need a full system, guided by patterns of inference [Frege]
     Full Idea: We cannot long remain content with the present fragmentation [of mathematics]. Order can be created only by a system. But to construct a system it is necessary that in any step forward we take we should be aware of the logical inferences involved.
     From: Gottlob Frege (Logic in Mathematics [1914], p.205)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
If principles are provable, they are theorems; if not, they are axioms [Frege]
     Full Idea: If the law [of induction] can be proved, it will be included amongst the theorems of mathematics; if it cannot, it will be included amongst the axioms.
     From: Gottlob Frege (Logic in Mathematics [1914], p.203)
     A reaction: This links Frege with the traditional Euclidean view of axioms. The question, then, is how do we know them, given that we can't prove them.
7. Existence / D. Theories of Reality / 4. Anti-realism
Putnam says anti-realism is a bad explanation of accurate predictions [Putnam, by Okasha]
     Full Idea: Putnam's 'no miracle' argument says that being an anti-realist is akin to believing in miracles (because of the accurate predictons). …It is a plausibility argument - an inference to the best explanation.
     From: report of Hilary Putnam (works [1980]) by Samir Okasha - Philosophy of Science: Very Short Intro (2nd ed) 4
     A reaction: [not sure of ref] Putnam later backs off from this argument, but my personal realism rests on best explanation. Does anyone want to prefer an inferior explanation? The objection is that successful theories can turn out to be false. Phlogiston, ether.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Every concept must have a sharp boundary; we cannot allow an indeterminate third case [Frege]
     Full Idea: Of any concept, we must require that it have a sharp boundary. Of any object it must hold either that it falls under the concept or it does not. We may not allow a third case in which it is somehow indeterminate whether an object falls under a concept.
     From: Gottlob Frege (Logic in Mathematics [1914], p.229), quoted by Ian Rumfitt - The Logic of Boundaryless Concepts p.1 n1
     A reaction: This is the voice of the classical logician, which has echoed by Russell. I'm with them, I think, in the sense that logic can only work with precise concepts. The jury is still out. Maybe we can 'precisify', without achieving total precision.
18. Thought / B. Mechanics of Thought / 5. Mental Files
We need definitions to cram retrievable sense into a signed receptacle [Frege]
     Full Idea: If we need such signs, we also need definitions so that we can cram this sense into the receptacle and also take it out again.
     From: Gottlob Frege (Logic in Mathematics [1914], p.209)
     A reaction: Has anyone noticed that Frege is the originator of the idea of the mental file? Has anyone noticed the role that definition plays in his account?
We use signs to mark receptacles for complex senses [Frege]
     Full Idea: We often need to use a sign with which we associate a very complex sense. Such a sign seems a receptacle for the sense, so that we can carry it with us, while being always aware that we can open this receptacle should we need what it contains.
     From: Gottlob Frege (Logic in Mathematics [1914], p.209)
     A reaction: This exactly the concept of a mental file, which I enthusiastically endorse. Frege even talks of 'opening the receptacle'. For Frege a definition (which he has been discussing) is the assigment of a label (the 'definiendum') to the file (the 'definiens').
19. Language / A. Nature of Meaning / 6. Meaning as Use
A sign won't gain sense just from being used in sentences with familiar components [Frege]
     Full Idea: No sense accrues to a sign by the mere fact that it is used in one or more sentences, the other constituents of which are known.
     From: Gottlob Frege (Logic in Mathematics [1914], p.213)
     A reaction: Music to my ears. I've never grasped how meaning could be grasped entirely through use.
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
Thoughts are not subjective or psychological, because some thoughts are the same for us all [Frege]
     Full Idea: A thought is not something subjective, is not the product of any form of mental activity; for the thought that we have in Pythagoras's theorem is the same for everybody.
     From: Gottlob Frege (Logic in Mathematics [1914], p.206)
     A reaction: When such thoughts are treated as if the have objective (platonic) existence, I become bewildered. I take a thought (or proposition) to be entirely psychological, but that doesn't stop two people from having the same thought.
A thought is the sense expressed by a sentence, and is what we prove [Frege]
     Full Idea: The sentence is of value to us because of the sense that we grasp in it, which is recognisably the same in a translation. I call this sense the thought. What we prove is not a sentence, but a thought.
     From: Gottlob Frege (Logic in Mathematics [1914], p.206)
     A reaction: The 'sense' is presumably the German 'sinn', and a 'thought' in Frege is what we normally call a 'proposition'. So the sense of a sentence is a proposition, and logic proves propositions. I'm happy with that.
19. Language / D. Propositions / 5. Unity of Propositions
The parts of a thought map onto the parts of a sentence [Frege]
     Full Idea: A sentence is generally a complex sign, so the thought expressed by it is complex too: in fact it is put together in such a way that parts of a thought correspond to parts of the sentence.
     From: Gottlob Frege (Logic in Mathematics [1914], p.207)
     A reaction: This is the compositional view of propositions, as opposed to the holistic view.
26. Natural Theory / C. Causation / 2. Types of cause
Causation is either direct realism, Humean reduction, non-Humean reduction or theoretical realism [Tooley]
     Full Idea: The main approaches to causation I shall refer to as direct realism, Humean reductionism, non-Humean reductionism, and indirect or theoretical realism.
     From: Michael Tooley (Causation and Supervenience [2003], 2)
     A reaction: The first simply observes causation (Anscombe), the second reduces it to regularity (Hume), the third reduces it to other natural features (Fair, Salmon, Dowe), the fourth takes an instrumental approach (Armstrong, Tooley). I favour the third approach.
Causation distinctions: reductionism/realism; Humean/non-Humean states; observable/non-observable [Tooley]
     Full Idea: The three main distinctions concerning causation are between reductionism and realism; between Humean and non-Humean states of affairs; and between states that are immediately observable and those that are not.
     From: Michael Tooley (Causation and Supervenience [2003], 2)
     A reaction: I favour reductionism over realism, because I like the question 'If x is real, what is it made of?' I favour non-Humean states of affairs, because I think constant conjunction is very superficial. I presume the existence of non-observable components.
26. Natural Theory / C. Causation / 5. Direction of causation
We can only reduce the direction of causation to the direction of time if we are realist about the latter [Tooley]
     Full Idea: A reductionist can hold that the direction of causation is to be defined in terms of the direction of time; but this response is only available if one is prepared to adopt a realist view of the direction of time.
     From: Michael Tooley (Causation and Supervenience [2003], 4.2.1.2)
     A reaction: A nice illustration of the problems that arise if we try to be reductionist about everything. Personally I prefer my realism to be about time rather than about causation. Time, I would say, makes causation possible, not the other way around.
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
Causation is directly observable in pressure on one's body, and in willed action [Tooley]
     Full Idea: The arguments in favour of causation being observable appeal especially to the impression of pressure upon one's body, and to one's introspective awareness of willing, together with the perception of the event which one willed.
     From: Michael Tooley (Causation and Supervenience [2003], 3)
     A reaction: [He cites Evan Fagels] Anscombe also cites words which have causality built into their meaning. This would approach would give priority to mental causation, and would need to demonstrate that similar things happen out in the world.
26. Natural Theory / C. Causation / 8. Particular Causation / e. Probabilistic causation
Probabilist laws are compatible with effects always or never happening [Tooley]
     Full Idea: If laws of causation are probabilistic then the law does not entail any restrictions upon the proportion of events that follow a cause: ...it can have absolutely any value from zero to one.
     From: Michael Tooley (Causation and Supervenience [2003], 4.1.3)
     A reaction: This objection applies to an account of laws of nature, and also to definitions of causes as events which increase probabilities. One needn't be fully committed to natural necessity, but it must form some part of the account.
The actual cause may not be the most efficacious one [Tooley]
     Full Idea: A given type of state may be causally efficacious, but not as efficacious as an alternative states, so it is not true that even a direct cause need raise the probability of its effect.
     From: Michael Tooley (Causation and Supervenience [2003], 6.2.4)
     A reaction: My intuition is that explaining causation in terms of probabilities entirely misses the point, which mainly concerns explaining the sense of necessitation in a cause. This idea give me a good reason for my intuition.
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
In counterfactual worlds there are laws with no instances, so laws aren't supervenient on actuality [Tooley]
     Full Idea: If a counterfactual holds in a possible world, that is presumably because a law holds in that world, which means there could be basic causal laws that lack all instances. But then causal laws cannot be totally supervenient on the history of the universe.
     From: Michael Tooley (Causation and Supervenience [2003], 4.1.2)
     A reaction: A nice argument, which sounds like trouble for Lewis. One could deny that the laws have to hold in the counterfactual worlds, but then we wouldn't be able to conceive them.
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
Explaining causation in terms of laws can't explain the direction of causation [Tooley]
     Full Idea: The most serious objection to any account of causation in terms of nomological relations alone is that it can't provide any account of the direction of causation.
     From: Michael Tooley (Causation and Supervenience [2003], 5.1)
     A reaction: Cf. Idea 8393. I am not convinced that there could be an 'account' of the direction of causation, so I am inclined to take it as given. If we take 'powers' (active properties) as basic, they would have a direction built into them.
Causation is a concept of a relation the same in all worlds, so it can't be a physical process [Tooley]
     Full Idea: Against the view that causation is a particular physical process, might it not be argued that the concept of causation is the concept of a relation that possesses a certain intrinsic nature, so that causation must be the same in all possible worlds?
     From: Michael Tooley (Causation and Supervenience [2003], 5.4)
     A reaction: This makes the Humean assumption that laws of nature might be wildly different. I think it is perfectly possible that physical processes are the only way that causation could occur. Alternatively, the generic definition of 'cause' is just very vague.