Combining Texts

All the ideas for 'Meaning and the Moral Sciences', 'Foundations without Foundationalism' and 'De primae philosophiae emendatione'

unexpand these ideas     |    start again     |     specify just one area for these texts


73 ideas

1. Philosophy / G. Scientific Philosophy / 3. Scientism
A culture needs to admit that knowledge is more extensive than just 'science' [Putnam]
     Full Idea: The acknowledgement that the sphere of knowledge is wider than the sphere of 'science' seems to me to be a cultural necessity if we are to arrive at a sane and human view of ourselves or of science.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Intro)
     A reaction: A very nice remark, with which I intuitively agree, but then you are left with the problem of explaining how something can qualify as knowledge when it can't pass the stringent tests of science. How wide to we spread, and why?
'True' and 'refers' cannot be made scientically precise, but are fundamental to science [Putnam]
     Full Idea: Some non-scientific knowledge is presupposed by science; for example, I have been arguing that 'refers' and 'true' cannot be made scientifically precise; yet truth is a fundamental term in logic - a precise science.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec VI)
     A reaction: We might ask whether we 'know' what 'true' and 'refers' mean, as opposed to being able to use them. If their usage doesn't count as knowledge, then we could still end up with all actual knowledge being somehow 'scientific'.
3. Truth / A. Truth Problems / 1. Truth
'The rug is green' might be warrantedly assertible even though the rug is not green [Putnam]
     Full Idea: 'The rug is green' might be warrantedly assertible even though the rug is not green.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Three)
     A reaction: The word 'warranted' seems to be ambiguous in modern philosophy. See Idea 6150. There seem to be internalist and externalist versions. It seems clear to say that a belief could be well-justified and yet false.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
We need the correspondence theory of truth to understand language and science [Putnam]
     Full Idea: A correspondence theory of truth is needed to understand how language works, and how science works.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Intro)
     A reaction: Putnam retreated from this position to a more pragmatic one later on, but all my sympathies are with the present view, despite being repeatedly told by modern philosophers that I am wrong. See McGinn (Idea 6085) and Searle (Idea 3508).
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Correspondence between concepts and unconceptualised reality is impossible [Putnam]
     Full Idea: The great nineteenth century argument against the correspondence theory of truth was that one cannot think of truth as correspondence to facts (or 'reality') because one would need to compare concepts directly with unconceptualised reality.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Three)
     A reaction: Presumably the criticism was offered by idealists, who preferred a coherence theory. The defence is to say that there is a confusion here between a concept and the contents of a concept. The contents of a concept are designed to be facts.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Satisfaction is 'truth in a model', which is a model of 'truth' [Shapiro]
     Full Idea: In a sense, satisfaction is the notion of 'truth in a model', and (as Hodes 1984 elegantly puts it) 'truth in a model' is a model of 'truth'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: So we can say that Tarski doesn't offer a definition of truth itself, but replaces it with a 'model' of truth.
3. Truth / F. Semantic Truth / 2. Semantic Truth
In Tarski's definition, you understand 'true' if you accept the notions of the object language [Putnam]
     Full Idea: Anyone who accepts the notions of whatever object language is in question - and this can be chosen arbitrarily - can also understand 'true' as defined by Tarski for that object language.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Intro)
     A reaction: Thus if we say "'snow is white' is true iff snow is white", then if you 'accept the notion' that snow is white in English, you understand what 'true' means. This seems to leave you with the meaning of 'snow is white' being its truth conditions.
Tarski has given a correct account of the formal logic of 'true', but there is more to the concept [Putnam]
     Full Idea: What Tarski has done is to give us a perfectly correct account of the formal logic of the concept 'true', but the formal logic of the concept is not all there is to the notion of truth.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Intro)
     A reaction: I find this refreshing. A lot of modern philosophers seem to think that truth is no longer an interesting philosophical topic, because deflationary accounts have sidelined it, but I take the concept to be at the heart of metaphysics.
Only Tarski has found a way to define 'true' [Putnam]
     Full Idea: There is only one way anyone knows how to define 'true' and that is Tarski's way.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec II.5)
     A reaction: However, Davidson wrote a paper called 'On the Folly of Trying to Define Truth', which seems to reject even Tarski. Also bear in mind Putnam's earlier remark (Idea 6265) that there is more to truth than Tarski's definition. Just take 'true' as primitive.
4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
Aristotelian logic is complete [Shapiro]
     Full Idea: Aristotelian logic is complete.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5)
     A reaction: [He cites Corcoran 1972]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A set is 'transitive' if contains every member of each of its members [Shapiro]
     Full Idea: If, for every b∈d, a∈b entails that a∈d, the d is said to be 'transitive'. In other words, d is transitive if it contains every member of each of its members.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.2)
     A reaction: The alternative would be that the members of the set are subsets, but the members of those subsets are not themselves members of the higher-level set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice is essential for proving downward Löwenheim-Skolem [Shapiro]
     Full Idea: The axiom of choice is essential for proving the downward Löwenheim-Skolem Theorem.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
Are sets part of logic, or part of mathematics? [Shapiro]
     Full Idea: Is there a notion of set in the jurisdiction of logic, or does it belong to mathematics proper?
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: It immediately strikes me that they might be neither. I don't see that relations between well-defined groups of things must involve number, and I don't see that mapping the relations must intrinsically involve logical consequence or inference.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
It is central to the iterative conception that membership is well-founded, with no infinite descending chains [Shapiro]
     Full Idea: In set theory it is central to the iterative conception that the membership relation is well-founded, ...which means there are no infinite descending chains from any relation.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.4)
Russell's paradox shows that there are classes which are not iterative sets [Shapiro]
     Full Idea: The argument behind Russell's paradox shows that in set theory there are logical sets (i.e. classes) that are not iterative sets.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.3)
     A reaction: In his preface, Shapiro expresses doubts about the idea of a 'logical set'. Hence the theorists like the iterative hierarchy because it is well-founded and under control, not because it is comprehensive in scope. See all of pp.19-20.
Iterative sets are not Boolean; the complement of an iterative set is not an iterative sets [Shapiro]
     Full Idea: Iterative sets do not exhibit a Boolean structure, because the complement of an iterative set is not itself an iterative set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
'Well-ordering' of a set is an irreflexive, transitive, and binary relation with a least element [Shapiro]
     Full Idea: A 'well-ordering' of a set X is an irreflexive, transitive, and binary relation on X in which every non-empty subset of X has a least element.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.3)
     A reaction: So there is a beginning, an ongoing sequence, and no retracing of steps.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
     Full Idea: There is no question of finding the 'correct' or 'true' logic underlying a part of natural language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: One needs the context of Shapiro's defence of second-order logic to see his reasons for this. Call me romantic, but I retain faith that there is one true logic. The Kennedy Assassination problem - can't see the truth because drowning in evidence.
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
     Full Idea: A logic can be seen as the ideal of what may be called 'relative justification', the process of coming to know some propositions on the basis of others.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.3.1)
     A reaction: This seems to be the modern idea of logic, as opposed to identification of a set of 'logical truths' from which eternal necessities (such as mathematics) can be derived. 'Know' implies that they are true - which conclusions may not be.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
     Full Idea: Bernays (1918) formulated and proved the completeness of propositional logic, the first precise solution as part of the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.1)
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
     Full Idea: In 1910 Weyl observed that set theory seemed to presuppose natural numbers, and he regarded numbers as more fundamental than sets, as did Fraenkel. Dedekind had developed set theory independently, and used it to formulate numbers.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.2)
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
     Full Idea: Skolem and Gödel were the main proponents of first-order languages. The higher-order language 'opposition' was championed by Zermelo, Hilbert, and Bernays.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
     Full Idea: Almost all the systems developed in the first part of the twentieth century are higher-order; first-order logic was an afterthought.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
     Full Idea: The 'triumph' of first-order logic may be related to the remnants of failed foundationalist programmes early this century - logicism and the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: Being complete must also be one of its attractions, and Quine seems to like it because of its minimal ontological commitment.
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
     Full Idea: Tharp (1975) suggested that compactness, semantic effectiveness, and the Löwenheim-Skolem properties are consequences of features one would want a logic to have.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: I like this proposal, though Shapiro is strongly against. We keep extending our logic so that we can prove new things, but why should we assume that we can prove everything? That's just what Gödel suggests that we should give up on.
The notion of finitude is actually built into first-order languages [Shapiro]
     Full Idea: The notion of finitude is explicitly 'built in' to the systems of first-order languages in one way or another.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1)
     A reaction: Personally I am inclined to think that they are none the worse for that. No one had even thought of all these lovely infinities before 1870, and now we are supposed to change our logic (our actual logic!) to accommodate them. Cf quantum logic.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
     Full Idea: Shapiro preferred second-order logic to set theory because second-order logic refers only to the relations and operations in a domain, and not to the other things that set-theory brings with it - other domains, higher-order relations, and so forth.
     From: report of Stewart Shapiro (Foundations without Foundationalism [1991]) by Shaughan Lavine - Understanding the Infinite VII.4
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
     Full Idea: Three systems of semantics for second-order languages: 'standard semantics' (variables cover all relations and functions), 'Henkin semantics' (relations and functions are a subclass) and 'first-order semantics' (many-sorted domains for variable-types).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: [my summary]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
     Full Idea: In 'Henkin' semantics, in a given model the relation variables range over a fixed collection of relations D on the domain, and the function variables range over a collection of functions F on the domain.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
     Full Idea: In the standard semantics of second-order logic, by fixing a domain one thereby fixes the range of both the first-order variables and the second-order variables. There is no further 'interpreting' to be done.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
     A reaction: This contrasts with 'Henkin' semantics (Idea 13650), or first-order semantics, which involve more than one domain of quantification.
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
     Full Idea: The counterparts of Completeness, Compactness and the Löwenheim-Skolem theorems all fail for second-order languages with standard semantics, but hold for Henkin or first-order semantics. Hence such logics are much like first-order logic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: Shapiro votes for the standard semantics, because he wants the greater expressive power, especially for the characterization of infinite structures.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
     Full Idea: It follows from Gödel's incompleteness theorem that the semantic consequence relation of second-order logic is not effective. For example, the set of logical truths of any second-order logic is not recursively enumerable. It is not even arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I don't fully understand this, but it sounds rather major, and a good reason to avoid second-order logic (despite Shapiro's proselytising). See Peter Smith on 'effectively enumerable'.
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
     Full Idea: Second-order logic is inherently incomplete, so its semantic consequence relation is not effective.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
     Full Idea: It is sometimes difficult to find a formula that is a suitable counterpart of a particular sentence of natural language, and there is no acclaimed criterion for what counts as a good, or even acceptable, 'translation'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
     Full Idea: The main role of substitutional semantics is to reduce ontology. As an alternative to model-theoretic semantics for formal languages, the idea is to replace the 'satisfaction' relation of formulas (by objects) with the 'truth' of sentences (using terms).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: I find this very appealing, and Ruth Barcan Marcus is the person to look at. My intuition is that logic should have no ontology at all, as it is just about how inference works, not about how things are. Shapiro offers a compromise.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
     Full Idea: The 'satisfaction' relation may be thought of as a function from models, assignments, and formulas to the truth values {true,false}.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: This at least makes clear that satisfaction is not the same as truth. Now you have to understand how Tarski can define truth in terms of satisfaction.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Semantics for models uses set-theory [Shapiro]
     Full Idea: Typically, model-theoretic semantics is formulated in set theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5.1)
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
     Full Idea: An axiomatization is 'categorical' if all its models are isomorphic to one another; ..hence it has 'essentially only one' interpretation [Veblen 1904].
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
Categoricity can't be reached in a first-order language [Shapiro]
     Full Idea: Categoricity cannot be attained in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.3)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
     Full Idea: A language has the Downward Löwenheim-Skolem property if each satisfiable countable set of sentences has a model whose domain is at most countable.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't employ an infinite model to represent a fact about a countable set.
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
     Full Idea: A language has the Upward Löwenheim-Skolem property if for each set of sentences whose model has an infinite domain, then it has a model at least as big as each infinite cardinal.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't have a countable model to represent a fact about infinite sets.
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems mean that no first-order theory with an infinite model is categorical. If Γ has an infinite model, then it has a model of every infinite cardinality. So first-order languages cannot characterize infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: So much of the debate about different logics hinges on characterizing 'infinite structures' - whatever they are! Shapiro is a leading structuralist in mathematics, so he wants second-order logic to help with his project.
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
     Full Idea: The Upward Löwenheim-Skolem theorem fails (trivially) with substitutional semantics. If there are only countably many terms of the language, then there are no uncountable substitution models.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: Better and better. See Idea 13674. Why postulate more objects than you can possibly name? I'm even suspicious of all real numbers, because you can't properly define them in finite terms. Shapiro objects that the uncountable can't be characterized.
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
     Full Idea: A logic is 'weakly sound' if every theorem is a logical truth, and 'strongly sound', or simply 'sound', if every deduction from Γ is a semantic consequence of Γ. Soundness indicates that the deductive system is faithful to the semantics.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: Similarly, 'weakly complete' is when every logical truth is a theorem.
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
     Full Idea: We can live without completeness in logic, and live well.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: This is the kind of heady suggestion that American philosophers love to make. Sounds OK to me, though. Our ability to draw good inferences should be expected to outrun our ability to actually prove them. Completeness is for wimps.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
     Full Idea: It is sometimes said that non-compactness is a defect of second-order logic, but it is a consequence of a crucial strength - its ability to give categorical characterisations of infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: The dispute between fans of first- and second-order may hinge on their attitude to the infinite. I note that Skolem, who was not keen on the infinite, stuck to first-order. Should we launch a new Skolemite Crusade?
Compactness is derived from soundness and completeness [Shapiro]
     Full Idea: Compactness is a corollary of soundness and completeness. If Γ is not satisfiable, then, by completeness, Γ is not consistent. But the deductions contain only finite premises. So a finite subset shows the inconsistency.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: [this is abbreviated, but a proof of compactness] Since all worthwhile logics are sound, this effectively means that completeness entails compactness.
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
     Full Idea: A logical language is 'semantically effective' if the collection of logically true sentences is a recursively enumerable set of strings.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Complex numbers can be defined as reals, which are defined as rationals, then integers, then naturals [Shapiro]
     Full Idea: 'Definitions' of integers as pairs of naturals, rationals as pairs of integers, reals as Cauchy sequences of rationals, and complex numbers as pairs of reals are reductive foundations of various fields.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.1)
     A reaction: On p.30 (bottom) Shapiro objects that in the process of reduction the numbers acquire properties they didn't have before.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Only higher-order languages can specify that 0,1,2,... are all the natural numbers that there are [Shapiro]
     Full Idea: The main problem of characterizing the natural numbers is to state, somehow, that 0,1,2,.... are all the numbers that there are. We have seen that this can be accomplished with a higher-order language, but not in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Natural numbers are the finite ordinals, and integers are equivalence classes of pairs of finite ordinals [Shapiro]
     Full Idea: By convention, the natural numbers are the finite ordinals, the integers are certain equivalence classes of pairs of finite ordinals, etc.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The 'continuum' is the cardinality of the powerset of a denumerably infinite set [Shapiro]
     Full Idea: The 'continuum' is the cardinality of the powerset of a denumerably infinite set.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.1.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
First-order arithmetic can't even represent basic number theory [Shapiro]
     Full Idea: Few theorists consider first-order arithmetic to be an adequate representation of even basic number theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5 n28)
     A reaction: This will be because of Idea 13656. Even 'basic' number theory will include all sorts of vast infinities, and that seems to be where the trouble is.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Some sets of natural numbers are definable in set-theory but not in arithmetic [Shapiro]
     Full Idea: There are sets of natural numbers definable in set-theory but not in arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 5.3.3)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Logicism is distinctive in seeking a universal language, and denying that logic is a series of abstractions [Shapiro]
     Full Idea: It is claimed that aiming at a universal language for all contexts, and the thesis that logic does not involve a process of abstraction, separates the logicists from algebraists and mathematicians, and also from modern model theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I am intuitively drawn to the idea that logic is essentially the result of a series of abstractions, so this gives me a further reason not to be a logicist. Shapiro cites Goldfarb 1979 and van Heijenoort 1967. Logicists reduce abstraction to logic.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Mathematics and logic have no border, and logic must involve mathematics and its ontology [Shapiro]
     Full Idea: I extend Quinean holism to logic itself; there is no sharp border between mathematics and logic, especially the logic of mathematics. One cannot expect to do logic without incorporating some mathematics and accepting at least some of its ontology.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I have strong sales resistance to this proposal. Mathematics may have hijacked logic and warped it for its own evil purposes, but if logic is just the study of inferences then it must be more general than to apply specifically to mathematics.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Some reject formal properties if they are not defined, or defined impredicatively [Shapiro]
     Full Idea: Some authors (Poincaré and Russell, for example) were disposed to reject properties that are not definable, or are definable only impredicatively.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
     A reaction: I take Quine to be the culmination of this line of thought, with his general rejection of 'attributes' in logic and in metaphysics.
7. Existence / D. Theories of Reality / 2. Realism
Realism is a theory, which explains the convergence of science and the success of language [Putnam]
     Full Idea: Realism is an empirical theory; it explains the convergence of scientific theories, where earlier theories are often limiting cases of later theories (which is why theoretical terms preserve their reference); and it explains the success of language.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Four)
     A reaction: I agree. Personally, I think of Plato's Theory of Forms and all religions as empirical theories. The response from anti-realists is generally to undermine confidence in the evidence which these 'empirical theories' are said to explain.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
Properties are often seen as intensional; equiangular and equilateral are different, despite identity of objects [Shapiro]
     Full Idea: Properties are often taken to be intensional; equiangular and equilateral are thought to be different properties of triangles, even though any triangle is equilateral if and only if it is equiangular.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.3)
     A reaction: Many logicians seem to want to treat properties as sets of objects (red being just the set of red things), but this looks like a desperate desire to say everything in first-order logic, where only objects are available to quantify over.
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
The concept of forces or powers best reveals the true concept of substance [Leibniz]
     Full Idea: The concept of forces or powers ..for whose explanation I have set up a distinct science of dynamics, brings the strongest light to bear upon our understanding of the true concept of substance.
     From: Gottfried Leibniz (De primae philosophiae emendatione [1694], G IV 469), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 4
     A reaction: My own experience was that as soon as I encountered the notion of a 'power' in the metaphysics of science (see Molnar on this) the whole thing began to form a coherent picture. Powers rule.
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
If a tautology is immune from revision, why would that make it true? [Putnam]
     Full Idea: If we held, say, 'All unmarried men are unmarried' as absolutely immune from revision, why would this make it true?
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Four)
     A reaction: A very nice question. Like most American philosophers, Putnam accepts Quine's attack on the unrevisability of analytic truths. His point here is that defenders of analytic truths are probably desperate to preserve basic truths, but it won't work.
13. Knowledge Criteria / C. External Justification / 7. Testimony
Knowledge depends on believing others, which must be innate, as inferences are not strong enough [Putnam]
     Full Idea: Our ability to picture how people are likely to respond may well be innate; indeed, our disposition to believe what other people tell us (which is fundamental to knowledge) could hardly be an inference, as that isn’t good enough for knowledge.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec VI)
     A reaction: An interesting claim. There could be an intermediate situation, which is a hard-wired non-conscious inference. When dismantled, the 'innate' brain circuits for assessing testimony could turn out to work on logic and evidence.
Empathy may not give knowledge, but it can give plausibility or right opinion [Putnam]
     Full Idea: Empathy with others may give less than 'Knowledge', but it gives more than mere logical or physical possibility; it gives plausibility, or (to revive Platonic terminology) it provides 'right opinion'.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec VI)
     A reaction: See Ideas 174 and 2140 for Plato. Putnam is exploring areas of knowledge outside the limits of strict science. Behind this claim seems to lie the Principle of Charity (3971), but a gang of systematic liars (e.g. evil students) would be a problem case.
14. Science / D. Explanation / 4. Explanation Doubts / a. Explanation as pragmatic
You can't decide which explanations are good if you don't attend to the interest-relative aspects [Putnam]
     Full Idea: Explanation is an interest-relative notion …explanation has to be partly a pragmatic concept. To regard the 'pragmatics' of explanation as no part of the concept is to abdicate the job of figuring out what makes an explanation good.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], p. 41-2), quoted by David-Hillel Ruben - Explaining Explanation Ch 1
     A reaction: I suppose this is just obvious, depending on how far you want to take the 'interest-relative' bit. If a fool is fobbed off with a trivial explanation, there must be some non-relative criterion for assessing that.
19. Language / A. Nature of Meaning / 1. Meaning
Theory of meaning presupposes theory of understanding and reference [Putnam]
     Full Idea: Theory of meaning presupposes theory of understanding and reference.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Four)
     A reaction: How can you have a theory of understanding without a meaning that requires to be understood? Personally I think about the minds of small animals when pondering this, and that seems to put reference and truth at the front of the queue.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
Truth conditions can't explain understanding a sentence, because that in turn needs explanation [Putnam]
     Full Idea: You can't treat understanding a sentence as knowing its truth conditions, because it then becomes unintelligible what that knowledge in turn consists in.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Four)
     A reaction: The implication, I take it, is circularity; how can you specify truth conditions if you don't understand sentences? Putnam here agrees with Dummett that verification must be involved. Something has to be taken as axiomatic in all this.
We should reject the view that truth is prior to meaning [Putnam]
     Full Idea: I am suggesting that we reject the view that truth (based on the semantic theory) is prior to meaning.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Three)
     A reaction: It is a nice question which of truth or meaning has logical priority. One might start by speculating about how and why animals think. A moth attracted to flame is probably working on truth without much that could be called 'meaning'.
19. Language / B. Reference / 1. Reference theories
How reference is specified is not what reference is [Putnam]
     Full Idea: A theory of how reference is specified isn't a theory of what reference is.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec V)
     A reaction: A simple and important point. We may achieve reference by naming, describing, grunting or pointing, but the question is, what have we achieved when we get there?
19. Language / B. Reference / 4. Descriptive Reference / b. Reference by description
The claim that scientific terms are incommensurable can be blocked if scientific terms are not descriptions [Putnam]
     Full Idea: The line of reasoning of Kuhn and Feyerabend can be blocked by arguing (as I have in various places, and as Saul Kripke has) that scientific terms are not synonymous with descriptions.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec II.2)
     A reaction: A nice clear statement of the motivation for creating the causal theory of reference. See Idea 6162. We could still go back and ask whether we could block scientific relativism by rethinking how descriptions work, instead of abandoning them.
19. Language / F. Communication / 4. Private Language
A private language could work with reference and beliefs, and wouldn't need meaning [Putnam]
     Full Idea: A language made up and used by a being who belonged to no community would have no need for such a concept as the 'meaning' of a term. To state the reference of each term and what the language speaker believes is to tell the whole story.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Three)
     A reaction: A subtle response to Wittgenstein's claim (e.g. Ideas 4152,4158), but I am not sure what Putnam means. I would have thought that beliefs had to be embodied in propositions. They may not need 'meaning' quite as urgently as sentences, but still…
19. Language / F. Communication / 6. Interpreting Language / b. Indeterminate translation
The correct translation is the one that explains the speaker's behaviour [Putnam]
     Full Idea: What it is to be a correct translation is to be the translation that best explains the behaviour of the speaker.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Lec III)
     A reaction: This seems fairly close to Quine, but rather puzzlingly uses the word 'correct'. If our criteria of translation are purely behavioural, there is no way we can be correct after one word ('gavagai'), so at what point does it become 'correct'?
Language maps the world in many ways (because it maps onto other languages in many ways) [Putnam]
     Full Idea: We could say that the language has more than one correct way of being mapped onto the world (it must, since it has more than one way of being correctly mapped onto a language which is itself correctly mapped onto the world).
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Four)
     A reaction: This spells out nicely the significance of Quine's 'indeterminacy of translation'. Others have pointed out that the fact that language maps onto world in many ways need not be anti-realist; the world is endless, and language is limited.
19. Language / F. Communication / 6. Interpreting Language / c. Principle of charity
You can't say 'most speaker's beliefs are true'; in some areas this is not so, and you can't count beliefs [Putnam]
     Full Idea: The maxim that 'most of a speaker's beliefs are true' as an a priori principle governing radical translation seems to me to go too far; first, I don't know how to count beliefs; second, most people's beliefs on some topics (philosophy) are probably false.
     From: Hilary Putnam (Meaning and the Moral Sciences [1978], Pt Three)
     A reaction: Putnam prefers a pragmatic view, where charity is applicable if behaviour is involved. Philosophy is too purely theoretical. The extent to which Charity should apply in philosophy seminars is a nice question, which all students should test in practice.