Combining Texts

All the ideas for 'fragments/reports', 'Negation' and 'The Art of the Infinite'

unexpand these ideas     |    start again     |     specify just one area for these texts


21 ideas

2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
     Full Idea: We are able to reason about inconsistent beliefs, stories, and theories in useful and important ways
     From: Edwin D. Mares (Negation [2014], 1)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionist logic looks best as natural deduction [Mares]
     Full Idea: Intuitionist logic appears most attractive in the form of a natural deduction system.
     From: Edwin D. Mares (Negation [2014], 5.5)
Intuitionism as natural deduction has no rule for negation [Mares]
     Full Idea: In intuitionist logic each connective has one introduction and one elimination rule attached to it, but in the classical system we have to add an extra rule for negation.
     From: Edwin D. Mares (Negation [2014], 5.5)
     A reaction: How very intriguing. Mares says there are other ways to achieve classical logic, but they all seem rather cumbersome.
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
     Full Idea: One reason for wanting a three-valued logic is to act as a basis of a theory of presupposition.
     From: Edwin D. Mares (Negation [2014], 3.1)
     A reaction: [He cites Strawson 1950] The point is that you can get a result when the presupposition does not apply, as in talk of the 'present King of France'.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Using Choice, you can cut up a small ball and make an enormous one from the pieces [Kaplan/Kaplan]
     Full Idea: The problem with the Axiom of Choice is that it allows an initiate (by an ingenious train of reasoning) to cut a golf ball into a finite number of pieces and put them together again to make a globe as big as the sun.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 9)
     A reaction: I'm not sure how this works (and I think it was proposed by the young Tarski), but it sounds like a real problem to me, for all the modern assumptions that Choice is fine.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
     Full Idea: The problem with material implication, and classical logic more generally, is that it considers only the truth value of formulas in deciding whether to make an implication stand between them. It ignores everything else.
     From: Edwin D. Mares (Negation [2014], 7.1)
     A reaction: The obvious problem case is conditionals, and relevance is an obvious extra principle that comes to mind.
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
     Full Idea: Among the virtues of classical logic is the fact that the connectives are related to one another in elegant ways that often involved negation. For example, De Morgan's Laws, which involve negation, disjunction and conjunction.
     From: Edwin D. Mares (Negation [2014], 2.2)
     A reaction: Mares says these enable us to take disjunction or conjunction as primitive, and then define one in terms of the other, using negation as the tool.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
     Full Idea: On its standard reading, excluded middle tells us that bivalence holds. To reject excluded middle, we must reject either non-contradiction, or ¬(A∧B) ↔ (¬A∨¬B) [De Morgan 3], or the principle of double negation. All have been tried.
     From: Edwin D. Mares (Negation [2014], 2.2)
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
     Full Idea: If we treat disjunction in the standard way and take the negation of a statement A to mean that A is false, accepting excluded middle forces us also to accept the principle of bivalence, which is the dictum that every statement is either true or false.
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: Mates's point is to show that passively taking the normal account of negation for granted has important implications.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
     Full Idea: In studying the logical connectives, philosophers of logic typically adopt the perspective of either model theory (givng truth conditions of various parts of the language), or of proof theory (where use in a proof system gives the connective's meaning).
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: [compressed] The commonest proof theory is natural deduction, giving rules for introduction and elimination. Mates suggests moving between the two views is illuminating.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
     Full Idea: Many-valued logics do not have reasonable natural deduction systems.
     From: Edwin D. Mares (Negation [2014], 1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Situation semantics for logics: not possible worlds, but information in situations [Mares]
     Full Idea: Situation semantics for logics consider not what is true in worlds, but what information is contained in situations.
     From: Edwin D. Mares (Negation [2014], 6.2)
     A reaction: Since many theoretical physicists seem to think that 'information' might be the most basic concept of a natural ontology, this proposal is obviously rather appealing. Barwise and Perry are the authors of the theory.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
     Full Idea: The difference between the principle of consistency and the principle of non-contradiction is that the former must be stated in a semantic metalanguage, whereas the latter is a thesis of logical systems.
     From: Edwin D. Mares (Negation [2014], 2.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
1 and 0, then add for naturals, subtract for negatives, divide for rationals, take roots for irrationals [Kaplan/Kaplan]
     Full Idea: You have 1 and 0, something and nothing. Adding gives us the naturals. Subtracting brings the negatives into light; dividing, the rationals; only with a new operation, taking of roots, do the irrationals show themselves.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 1 'Mind')
     A reaction: The suggestion is constructivist, I suppose - that it is only operations that produce numbers. They go on to show that complex numbers don't quite fit the pattern.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The rationals are everywhere - the irrationals are everywhere else [Kaplan/Kaplan]
     Full Idea: The rationals are everywhere - the irrationals are everywhere else.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 1 'Nameless')
     A reaction: Nice. That is, the rationals may be dense (you can always find another one in any gap), but the irrationals are continuous (no gaps).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
'Commutative' laws say order makes no difference; 'associative' laws say groupings make no difference [Kaplan/Kaplan]
     Full Idea: The 'commutative' laws say the order in which you add or multiply two numbers makes no difference; ...the 'associative' laws declare that regrouping couldn't change a sum or product (e.g. a+(b+c)=(a+b)+c ).
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Tablets')
     A reaction: This seem utterly self-evident, but in more complex systems they can break down, so it is worth being conscious of them.
'Distributive' laws say if you add then multiply, or multiply then add, you get the same result [Kaplan/Kaplan]
     Full Idea: The 'distributive' law says you will get the same result if you first add two numbers, and then multiply them by a third, or first multiply each by the third and then add the results (i.e. a · (b+c) = a · b + a · c ).
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Tablets')
     A reaction: Obviously this will depend on getting the brackets right, to ensure you are indeed doing the same operations both ways.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
     Full Idea: For the intuitionist, talk of mathematical objects is rather misleading. For them, there really isn't anything that we should call the natural numbers, but instead there is counting. What intuitionists study are processes, such as counting and collecting.
     From: Edwin D. Mares (Negation [2014], 5.1)
     A reaction: That is the first time I have seen mathematical intuitionism described in a way that made it seem attractive. One might compare it to a metaphysics based on processes. Apparently intuitionists struggle with infinite sets and real numbers.
13. Knowledge Criteria / E. Relativism / 2. Knowledge as Convention
By nature people are close to one another, but culture drives them apart [Hippias]
     Full Idea: I regard you all as relatives - by nature, not by convention. By nature like is akin to like, but convention is a tyrant over humankind and often constrains people to act contrary to nature.
     From: Hippias (fragments/reports [c.430 BCE]), quoted by Plato - Protagoras 337c8
14. Science / C. Induction / 3. Limits of Induction
The first million numbers confirm that no number is greater than a million [Kaplan/Kaplan]
     Full Idea: The claim that no number is greater than a million is confirmed by the first million test cases.
     From: R Kaplan / E Kaplan (The Art of the Infinite [2003], 2 'Intro')
     A reaction: Extrapolate from this, and you can have as large a number of cases as you could possibly think of failing to do the inductive job. Love it! Induction isn't about accumulations of cases. It is about explanation, which is about essence. Yes!
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
     Full Idea: In 'situation semantics' individuals, properties, facts, and events are treated as abstractions from situations.
     From: Edwin D. Mares (Negation [2014], 6.1)
     A reaction: [Barwise and Perry 1983 are cited] Since I take the process of abstraction to be basic to thought, I am delighted to learn that someone has developed a formal theory based on it. I am immediately sympathetic to situation semantics.