Combining Texts

All the ideas for 'Mathematical Methods in Philosophy', 'Substance and Individuation in Leibniz' and 'The Nature of Mathematical Knowledge'

unexpand these ideas     |    start again     |     specify just one area for these texts


53 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Three stages of philosophical logic: syntactic (1905-55), possible worlds (1963-85), widening (1990-) [Horsten/Pettigrew]
     Full Idea: Three periods can be distinguished in philosophical logic: the syntactic stage, from Russell's definite descriptions to the 1950s, the dominance of possible world semantics from the 50s to 80s, and a current widening of the subject.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 1)
     A reaction: [compressed] I've read elsewhere that the arrival of Tarski's account of truth in 1933, taking things beyond the syntactic, was also a landmark.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Logical formalization makes concepts precise, and also shows their interrelation [Horsten/Pettigrew]
     Full Idea: Logical formalization forces the investigator to make the central philosophical concepts precise. It can also show how some philosophical concepts and objects can be defined in terms of others.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 2)
     A reaction: This is the main rationale of the highly formal and mathematical approach to such things. The downside is when you impose 'precision' on language that was never intended to be precise.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are sets with functions and relations, and truth built up from the components [Horsten/Pettigrew]
     Full Idea: A (logical) model is a set with functions and relations defined on it that specify the denotation of the non-logical vocabulary. A series of recursive clauses explicate how truth values of complex sentences are compositionally determined from the parts.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: See the ideas on 'Functions in logic' and 'Relations in logic' (in the alphabetical list) to expand this important idea.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
     Full Idea: Kitcher says maths is an 'idealising theory', like some in physics; maths idealises features of the world, and practical operations, such as segregating and matching (numbering), measuring, cutting, moving, assembling (geometry), and collecting (sets).
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984]) by Michael D. Resnik - Maths as a Science of Patterns One.4.2.2
     A reaction: This seems to be an interesting line, which is trying to be fairly empirical, and avoid basing mathematics on purely a priori understanding. Nevertheless, we do not learn idealisation from experience. Resnik labels Kitcher an anti-realist.
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
     Full Idea: Proposals for a priori mathematical knowledge have three main types: conceptualist (true in virtue of concepts), constructivist (a construct of the human mind) and realist (in virtue of mathematical facts).
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.3)
     A reaction: Realism is pure platonism. I think I currently vote for conceptualism, with the concepts deriving from the concrete world, and then being extended by fictional additions, and shifts in the notion of what 'number' means.
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
     Full Idea: What makes a question interesting or gives it aesthetic appeal is its focussing of the project of advancing mathematical understanding, in light of the concepts and systems of beliefs already achieved.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.3)
     A reaction: Kitcher defends explanation (the source of understanding, presumably) in terms of unification with previous theories (the 'concepts and systems'). I always have the impression that mathematicians speak of 'beauty' when they see economy of means.
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
     Full Idea: Insofar as we can honor claims about the aesthetic qualities or the interest of mathematical inquiries, we should do so by pointing to their explanatory power.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.4)
     A reaction: I think this is a good enough account for me (but probably not for my friend Carl!). Beautiful cars are particularly streamlined. Beautiful people look particularly healthy. A beautiful idea is usually wide-ranging.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
     Full Idea: An important episode in the acceptance of complex numbers was the development by Wessel, Argand, and Gauss, of a geometrical model of the numbers.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: The model was in terms of vectors and rotation. New types of number are spurned until they can be shown to integrate into a range of mathematical practice, at which point mathematicians change the meaning of 'number' (without consulting us).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
     Full Idea: We perform a one-operation when we perform a segregative operation in which a single object is segregated.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.3)
     A reaction: This is part of Kitcher's empirical but constructive account of arithmetic, which I find very congenial. He avoids the word 'unit', and goes straight to the concept of 'one' (which he treats as more primitive than zero).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
     Full Idea: There is an old explanation of the utility of mathematics. Mathematics describes the structural features of our world, features which are manifested in the behaviour of all the world's inhabitants.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: He only cites Russell in modern times as sympathising with this view, but Kitcher gives it some backing. I think the view is totally correct. The digression produced by Cantorian infinities has misled us.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
     Full Idea: The method of infinitesimals is that you divide by the time, and then set the time to zero.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 10.2)
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
     Full Idea: Philosophers who hope to avoid commitment to abstract entities by claiming that mathematical statements are analytic must show how analyticity is, or provides a species of, truth not requiring reference.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.I)
     A reaction: [the last part is a quotation from W.D. Hart] Kitcher notes that Frege has a better account, because he provides objects to which reference can be made. I like this idea, which seems to raise a very large question, connected to truthmakers.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is an idealizing theory [Kitcher]
     Full Idea: I construe arithmetic as an idealizing theory.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: I find 'generalising' the most helpful word, because everyone seems to understand and accept the idea. 'Idealisation' invokes 'ideals', which lots of people dislike, and lots of philosophers seem to have trouble with 'abstraction'.
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
     Full Idea: I want to suggest both that arithmetic owes its truth to the structure of the world and that arithmetic is true in virtue of our constructive activity.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: Well said, but the problem seems no more mysterious to me than the fact that trees grow in the woods and we build houses out of them. I think I will declare myself to be an 'empirical constructivist' about mathematics.
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
     Full Idea: The development of a language for describing our correlational activity itself enables us to perform higher level operations.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: This is because all language itself (apart from proper names) is inherently general, idealised and abstracted. He sees the correlations as the nested collections expressed by set theory.
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
     Full Idea: The constructivist ontological thesis is that mathematics owes its truth to the activity of an actual or ideal subject. The epistemological thesis is that we can have a priori knowledge of this activity, and so recognise its limits.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: The mention of an 'ideal' is Kitcher's personal view. Kitcher embraces the first view, and rejects the second.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
     Full Idea: Conceptualists claim that we have basic a priori knowledge of mathematical axioms in virtue of our possession of mathematical concepts.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.1)
     A reaction: I sympathise with this view. If concepts are reasonably clear, they will relate to one another in certain ways. How could they not? And how else would you work out those relations other than by thinking about them?
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
     Full Idea: Someone who believes that basic truths of mathematics are true in virtue of meaning is not absolved from the task of saying what the referents of mathematical terms are, or ...what mathematical reality is like.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.6)
     A reaction: Nice question! He's a fan of getting at the explanatory in mathematics.
7. Existence / A. Nature of Existence / 1. Nature of Existence
If 'exist' doesn't express a property, we can hardly ask for its essence [Horsten/Pettigrew]
     Full Idea: If there is indeed no property of existence that is expressed by the word 'exist', then it makes no sense to ask for its essence.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 2)
     A reaction: As far as I can tell, this was exactly Aristotle's conclusion, so he skirted round the question of 'being qua being', and focused on the nature of objects instead. Grand continental talk of 'Being' doesn't sound very interesting.
8. Modes of Existence / A. Relations / 1. Nature of Relations
Scholastics treat relations as two separate predicates of the relata [Cover/O'Leary-Hawthorne]
     Full Idea: The scholastics treated it as a step in the right explanatory direction to analyze a relational statement of the form 'aRb' into two subject-predicate statements, attributing different relational predicates to a and to b.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 2.2.1)
     A reaction: The only alternative seems to be Russell's view of relations as pure universals, having a life of their own, quite apart from their relata. Or you could take them as properties of space, time (and powers?), external to the relata?
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
     Full Idea: The original introduction of abstract objects was a bad way of doing justice to the insight that mathematics is concerned with structure.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: I'm a fan of explanations in metaphysics, and hence find the concept of 'bad' explanations in metaphysics particularly intriguing.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
If you individuate things by their origin, you still have to individuate the origins themselves [Cover/O'Leary-Hawthorne]
     Full Idea: If we go for the necessity-of-origins view, A and B are different if the origin of A is different from the origin of B. But one is left with the further question 'When is the origin of A distinct from the origin of B?'
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: There may be an answer to this, in a regress of origins that support one another, but in the end the objection is obviously good. You can't begin to refer to an 'origin' if you can't identify anything in the first place.
Numerical difference is a symmetrical notion, unlike proper individuation [Cover/O'Leary-Hawthorne]
     Full Idea: Scholastics distinguished criteria of numerical difference from questions of individuation proper, since numerical difference is a symmetrical notion.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: This apparently old-fashioned point appears to be conclusively correct. Modern thinkers, though, aren't comfortable with proper individuation, because they don't believe in concepts like 'essence' and 'substance' that are needed for the job.
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
Haecceity as property, or as colourless thisness, or as singleton set [Cover/O'Leary-Hawthorne]
     Full Idea: There is a contemporary property construal of haecceities, ...and a Scotistic construal as primitive, 'colourless' thisnesses which, unlike singleton-set haecceities, are aimed to do some explanatory work.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.4)
     A reaction: [He associates the contemporary account with David Kaplan] I suppose I would say that individuation is done by properties, but not by some single property, so I take it that I don't believe in haecceities at all. What individuates a haecceity?
9. Objects / B. Unity of Objects / 2. Substance / a. Substance
Maybe 'substance' is more of a mass-noun than a count-noun [Cover/O'Leary-Hawthorne]
     Full Idea: We could think of 'substance' on the model of a mass noun, rather than a count noun.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.3)
     A reaction: They offer this to help Leibniz out of a mess, but I think he would be appalled. The proposal seems close to 'prime matter' in Aristotle, which never quite does the job required of it. The idea is nice, though, and should be taken seriously.
9. Objects / B. Unity of Objects / 2. Substance / c. Types of substance
We can ask for the nature of substance, about type of substance, and about individual substances [Cover/O'Leary-Hawthorne]
     Full Idea: In the 'blueprint' approach to substance, we confront at least three questions: What is it for a thing to be an individual substance? What is it for a thing to be the kind of substance that it is? What is it to be that very individual substance?
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.1)
     A reaction: My working view is that the answer to the first question is that substance is essence, that the second question is overrated and parasitic on the third, and that the third is the key question, and also reduces to essence.
9. Objects / B. Unity of Objects / 2. Substance / d. Substance defined
The general assumption is that substances cannot possibly be non-substances [Cover/O'Leary-Hawthorne]
     Full Idea: There is a widespread assumption, now and in the past, that substances are essentially substances: nothing is actually a substance but possibly a non-substance.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.2)
     A reaction: It seems to me that they clearly mean, in this context, that substances are 'necessarily' substances, not that they are 'essentially' substances. I would just say that substances are essences, and leave the necessity question open.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Modern essences are sets of essential predicate-functions [Cover/O'Leary-Hawthorne]
     Full Idea: The modern view of essence is that the essence of a particular thing is given by the set of predicate-functions essential to it, and the essence of any kind is given by the set of predicate-functions essential to every possible member of that kind.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.2.2)
     A reaction: Thus the modern view has elided the meanings of 'essential' and 'necessary' when talking of properties. They are said to be 'functions' from possible worlds to individuals. The old view (and mine) demands real essences, not necessary properties.
Modern essentialists express essence as functions from worlds to extensions for predicates [Cover/O'Leary-Hawthorne]
     Full Idea: The modern essentialist gives the same metaphysical treatment to every grammatical predicate - by associating a function from worlds to extensions for each.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 2.2)
     A reaction: I take this to mean that essentialism is the view that if some predicate attaches to an object then that predicate is essential if there is an extension of that predicate in all possible worlds. In English, essential predicates are necessary predicates.
9. Objects / E. Objects over Time / 12. Origin as Essential
Necessity-of-origin won't distinguish ex nihilo creations, or things sharing an origin [Cover/O'Leary-Hawthorne]
     Full Idea: A necessity-of-origins approach cannot work to distinguish things that come into being genuinely ex nihilo, and cannot work to distinguish things sharing a single origin.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 7.4.1)
     A reaction: Since I am deeply suspicious of essentiality or necessity of origin (and they are not, I presume, the same thing) I like these two. Twins have always bothered me with the second case (where order of birth seems irrelevant).
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A Tarskian model can be seen as a possible state of affairs [Horsten/Pettigrew]
     Full Idea: A Tarskian model can in a sense be seen as a model of a possible state of affairs.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: I include this remark to show how possible worlds semantics built on the arrival of model theory.
The 'spheres model' was added to possible worlds, to cope with counterfactuals [Horsten/Pettigrew]
     Full Idea: The notion of a possible worlds model was extended (resulting in the concept of a 'spheres model') in order to obtain a satisfactory logical treatment of counterfactual conditional sentences.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 4)
     A reaction: Thus we add 'centred' worlds, and an 'actual' world, to the loose original model. It is important to remember when we discuss 'close' worlds that we are then committed to these presuppositions.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Epistemic logic introduced impossible worlds [Horsten/Pettigrew]
     Full Idea: The idea of 'impossible worlds' was introduced into epistemic logic.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 4)
     A reaction: Nathan Salmon seems interested in their role in metaphysics (presumably in relation to Meinongian impossible objects, like circular squares, which must necessarily be circular).
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possible worlds models contain sets of possible worlds; this is a large metaphysical commitment [Horsten/Pettigrew]
     Full Idea: Each possible worlds model contains a set of possible worlds. For this reason, possible worlds semantics is often charged with smuggling in heavy metaphysical commitments.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: To a beginner it looks very odd that you should try to explain possibility by constructing a model of it in terms of 'possible' worlds.
Using possible worlds for knowledge and morality may be a step too far [Horsten/Pettigrew]
     Full Idea: When the possible worlds semantics were further extended to model notions of knowledge and of moral obligation, the application was beginning to look distinctly forced and artificial.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 5)
     A reaction: They accept lots of successes in modelling necessity and time.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Even extreme modal realists might allow transworld identity for abstract objects [Cover/O'Leary-Hawthorne]
     Full Idea: It might be suggested that even the extreme modal realist can countenance transworld identity for abstract objects.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 3.2.2 n46)
     A reaction: This may sound right for uncontroversial or well-defined abstracta such as numbers and circles, but even 'or' is ambiguous, and heaven knows what the transworld identity of 'democracy' is!
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
     Full Idea: X knows a priori that p iff the belief was produced with an a priori warrant, which is a process which is available to X, and this process is a warrant, and it makes p true.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.4)
     A reaction: [compression of a formal spelling-out] This is a modified version of Goldman's reliabilism, for a priori knowledge. It sounds a bit circular and uninformative, but it's a start.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
     Full Idea: When we follow long mathematical proofs we lose our a priori warrants for their beginnings.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.2)
     A reaction: Kitcher says Descartes complains about this problem several times in his 'Regulae'. The problem runs even deeper into all reasoning, if you become sceptical about memory. You have to remember step 1 when you do step 2.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
     Full Idea: Knowledge is independent of experience if any experience which would enable us to acquire the concepts involved would enable us to have the knowledge.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.3)
     A reaction: This is the 'conceptualist' view of a priori knowledge, which Kitcher goes on to attack, preferring a 'constructivist' view. The formula here shows that we can't divorce experience entirely from a priori thought. I find conceptualism a congenial view.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
     Full Idea: One can make a powerful case for supposing that some self-knowledge is a priori. At most, if not all, of our waking moments, each of us knows of herself that she exists.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.6)
     A reaction: This is a begrudging concession from a strong opponent to the whole notion of a priori knowledge. I suppose if you ask 'what can be known by thought alone?' then truths about thought ought to be fairly good initial candidates.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
     Full Idea: A 'warrant' refers to those processes which produce belief 'in the right way': X knows that p iff p, and X believes that p, and X's belief that p was produced by a process which is a warrant for it.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.2)
     A reaction: That is, a 'warrant' is a justification which makes a belief acceptable as knowledge. Traditionally, warrants give you certainty (and are, consequently, rather hard to find). I would say, in the modern way, that warrants are agreed by social convention.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
     Full Idea: According to Kitcher, if experiential evidence can defeat someone's justification for a belief, then their justification depends on the absence of that experiential evidence.
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984], p.89) by Albert Casullo - A Priori Knowledge 2.3
     A reaction: Sounds implausible. There are trillions of possible defeaters for most beliefs, but to say they literally depend on trillions of absences seems a very odd way of seeing the situation
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
We can go beyond mere causal explanations if we believe in an 'order of being' [Cover/O'Leary-Hawthorne]
     Full Idea: The philosopher comfortable with an 'order of being' has richer resources to make sense of the 'in virtue of' relation than that provided only by causal relations between states of affairs, positing in addition other sorts of explanatory relationships.
     From: Cover,J/O'Leary-Hawthorne,J (Substance and Individuation in Leibniz [1999], 1.1.2)
     A reaction: This might best be characterised as 'ontological dependence', and could be seen as a non-causal but fundamental explanatory relationship, and not one that has to depend on a theistic world view.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]
     Full Idea: To idealize is to trade accuracy in describing the actual for simplicity of description, and the compromise can sometimes be struck in different ways.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: There is clearly rather more to idealisation than mere simplicity. A matchstick man is not an ideal man.