Combining Texts

All the ideas for 'Mathematical Methods in Philosophy', 'What are Sets and What are they For?' and 'Mathematics and Philosophy: grand and little'

unexpand these ideas     |    start again     |     specify just one area for these texts


25 ideas

1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / e. Philosophy as reason
Philosophy aims to reveal the grandeur of mathematics [Badiou]
     Full Idea: Philosophy's role consists in informing mathematics of its own speculative grandeur.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.11)
     A reaction: Revealing the grandeur of something sounds more like a rhetorical than a rational exercise. How would you reveal the grandeur of a sunset to someone?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is usually derived from Separation, but it also seems to need Infinity [Oliver/Smiley]
     Full Idea: The empty set is usually derived via Zermelo's axiom of separation. But the axiom of separation is conditional: it requires the existence of a set in order to generate others as subsets of it. The original set has to come from the axiom of infinity.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: They charge that this leads to circularity, as Infinity depends on the empty set.
The empty set is something, not nothing! [Oliver/Smiley]
     Full Idea: Some authors need to be told loud and clear: if there is an empty set, it is something, not nothing.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: I'm inclined to think of a null set as a pair of brackets, so maybe that puts it into a metalanguage.
We don't need the empty set to express non-existence, as there are other ways to do that [Oliver/Smiley]
     Full Idea: The empty set is said to be useful to express non-existence, but saying 'there are no Us', or ¬∃xUx are no less concise, and certainly less roundabout.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
Maybe we can treat the empty set symbol as just meaning an empty term [Oliver/Smiley]
     Full Idea: Suppose we introduce Ω not as a term standing for a supposed empty set, but as a paradigm of an empty term, not standing for anything.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 1.2)
     A reaction: This proposal, which they go on to explore, seems to mean that Ω (i.e. the traditional empty set symbol) is no longer part of set theory but is part of semantics.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The unit set may be needed to express intersections that leave a single member [Oliver/Smiley]
     Full Idea: Thomason says with no unit sets we couldn't call {1,2}∩{2,3} a set - but so what? Why shouldn't the intersection be the number 2? However, we then have to distinguish three different cases of intersection (common subset or member, or disjoint).
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 2.2)
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Three stages of philosophical logic: syntactic (1905-55), possible worlds (1963-85), widening (1990-) [Horsten/Pettigrew]
     Full Idea: Three periods can be distinguished in philosophical logic: the syntactic stage, from Russell's definite descriptions to the 1950s, the dominance of possible world semantics from the 50s to 80s, and a current widening of the subject.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 1)
     A reaction: [compressed] I've read elsewhere that the arrival of Tarski's account of truth in 1933, taking things beyond the syntactic, was also a landmark.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Logical formalization makes concepts precise, and also shows their interrelation [Horsten/Pettigrew]
     Full Idea: Logical formalization forces the investigator to make the central philosophical concepts precise. It can also show how some philosophical concepts and objects can be defined in terms of others.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 2)
     A reaction: This is the main rationale of the highly formal and mathematical approach to such things. The downside is when you impose 'precision' on language that was never intended to be precise.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
If you only refer to objects one at a time, you need sets in order to refer to a plurality [Oliver/Smiley]
     Full Idea: A 'singularist', who refers to objects one at a time, must resort to the language of sets in order to replace plural reference to members ('Henry VIII's wives') by singular reference to a set ('the set of Henry VIII's wives').
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: A simple and illuminating point about the motivation for plural reference. Null sets and singletons give me the creeps, so I would personally prefer to avoid set theory when dealing with ontology.
We can use plural language to refer to the set theory domain, to avoid calling it a 'set' [Oliver/Smiley]
     Full Idea: Plurals earn their keep in set theory, to answer Skolem's remark that 'in order to treat of 'sets', we must begin with 'domains' that are constituted in a certain way'. We can speak in the plural of 'the objects', not a 'domain' of objects.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], Intro)
     A reaction: [Skolem 1922:291 in van Heijenoort] Zermelo has said that the domain cannot be a set, because every set belongs to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are true no matter what exists - but predicate calculus insists that something exists [Oliver/Smiley]
     Full Idea: Logical truths should be true no matter what exists, so true even if nothing exists. The classical predicate calculus, however, makes it logically true that something exists.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are sets with functions and relations, and truth built up from the components [Horsten/Pettigrew]
     Full Idea: A (logical) model is a set with functions and relations defined on it that specify the denotation of the non-logical vocabulary. A series of recursive clauses explicate how truth values of complex sentences are compositionally determined from the parts.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: See the ideas on 'Functions in logic' and 'Relations in logic' (in the alphabetical list) to expand this important idea.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
In mathematics, if a problem can be formulated, it will eventually be solved [Badiou]
     Full Idea: Only in mathematics can one unequivocally maintain that if thought can formulate a problem, it can and will solve it, regardless of how long it takes.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.17)
     A reaction: I hope this includes proving the Continuum Hypothesis, and Goldbach's Conjecture. It doesn't seem quite true, but it shows why philosophers of a rationalist persuasion are drawn to mathematics.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
If mathematics purely concerned mathematical objects, there would be no applied mathematics [Oliver/Smiley]
     Full Idea: If mathematics was purely concerned with mathematical objects, there would be no room for applied mathematics.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.1)
     A reaction: Love it! Of course, they are using 'objects' in the rather Fregean sense of genuine abstract entities. I don't see why fictionalism shouldn't allow maths to be wholly 'pure', although we have invented fictions which actually have application.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Mathematics shows that thinking is not confined to the finite [Badiou]
     Full Idea: Mathematics teaches us that there is no reason whatsoever to confne thinking within the ambit of finitude.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.19)
     A reaction: This would perhaps make Cantor the greatest thinker who ever lived. It is an exhilarating idea, but we should ward the reader against romping of into unrestrained philosophical thought about infinities. You may be jumping without your Cantorian parachute.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Sets might either represent the numbers, or be the numbers, or replace the numbers [Oliver/Smiley]
     Full Idea: Identifying numbers with sets may mean one of three quite different things: 1) the sets represent the numbers, or ii) they are the numbers, or iii) they replace the numbers.
     From: Oliver,A/Smiley,T (What are Sets and What are they For? [2006], 5.2)
     A reaction: Option one sounds the most plausible to me. I will take numbers to be patterns embedded in nature, and sets are one way of presenting them in shorthand form, in order to bring out what is repeated.
7. Existence / A. Nature of Existence / 1. Nature of Existence
If 'exist' doesn't express a property, we can hardly ask for its essence [Horsten/Pettigrew]
     Full Idea: If there is indeed no property of existence that is expressed by the word 'exist', then it makes no sense to ask for its essence.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 2)
     A reaction: As far as I can tell, this was exactly Aristotle's conclusion, so he skirted round the question of 'being qua being', and focused on the nature of objects instead. Grand continental talk of 'Being' doesn't sound very interesting.
7. Existence / A. Nature of Existence / 3. Being / a. Nature of Being
Mathematics inscribes being as such [Badiou]
     Full Idea: Mathematics inscribes being as such.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.12)
     A reaction: I don't pretend to understand that, but there is something about the purity and certainty of mathematics that makes us feel we are grappling with the core of existence. Perhaps. The same might be said of stubbing your toe on a bedpost.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
It is of the essence of being to appear [Badiou]
     Full Idea: It is of the essence of being to appear.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.16)
     A reaction: Nice slogan. In my humble opinion 'continental' philosophy is well worth reading because, despite the fluffy rhetoric and the shameless egotism and the desire to shock the bourgeoisie, they occasionally make wonderfully thought-provoking remarks.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A Tarskian model can be seen as a possible state of affairs [Horsten/Pettigrew]
     Full Idea: A Tarskian model can in a sense be seen as a model of a possible state of affairs.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: I include this remark to show how possible worlds semantics built on the arrival of model theory.
The 'spheres model' was added to possible worlds, to cope with counterfactuals [Horsten/Pettigrew]
     Full Idea: The notion of a possible worlds model was extended (resulting in the concept of a 'spheres model') in order to obtain a satisfactory logical treatment of counterfactual conditional sentences.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 4)
     A reaction: Thus we add 'centred' worlds, and an 'actual' world, to the loose original model. It is important to remember when we discuss 'close' worlds that we are then committed to these presuppositions.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Epistemic logic introduced impossible worlds [Horsten/Pettigrew]
     Full Idea: The idea of 'impossible worlds' was introduced into epistemic logic.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 4)
     A reaction: Nathan Salmon seems interested in their role in metaphysics (presumably in relation to Meinongian impossible objects, like circular squares, which must necessarily be circular).
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possible worlds models contain sets of possible worlds; this is a large metaphysical commitment [Horsten/Pettigrew]
     Full Idea: Each possible worlds model contains a set of possible worlds. For this reason, possible worlds semantics is often charged with smuggling in heavy metaphysical commitments.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: To a beginner it looks very odd that you should try to explain possibility by constructing a model of it in terms of 'possible' worlds.
Using possible worlds for knowledge and morality may be a step too far [Horsten/Pettigrew]
     Full Idea: When the possible worlds semantics were further extended to model notions of knowledge and of moral obligation, the application was beginning to look distinctly forced and artificial.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 5)
     A reaction: They accept lots of successes in modelling necessity and time.
21. Aesthetics / B. Nature of Art / 8. The Arts / b. Literature
All great poetry is engaged in rivalry with mathematics [Badiou]
     Full Idea: Like every great poet, Mallarmé was engaged in a tacit rivalry with mathematics.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.20)
     A reaction: I love these French pronouncements! Would Mallarmé have agreed? If poetry and mathematics are the poles, where is philosophy to be found?