Combining Texts

All the ideas for 'The Boundary Stones of Thought', 'Freedom of the Will and concept of a person' and 'Intermediate Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


116 ideas

1. Philosophy / E. Nature of Metaphysics / 6. Metaphysics as Conceptual
Logic doesn't have a metaphysical basis, but nor can logic give rise to the metaphysics [Rumfitt]
     Full Idea: There is surely no metaphysical basis for logic, but equally there is no logical basis for metaphysics, if that implies that we can settle the choice of logic in advance of settling any seriously contested metaphysical-cum-semantic issues.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.5)
     A reaction: Is this aimed at Tim Williamson's book on treating modal logic as metaphysics? I agree with the general idea that logic won't deliver a metaphysics. I might want to defend a good metaphysics giving rise to a good logic.
3. Truth / A. Truth Problems / 1. Truth
The idea that there are unrecognised truths is basic to our concept of truth [Rumfitt]
     Full Idea: The realist principle that a statement may be true even though no one is able to recognise its truth is so deeply embedded in our ordinary conception of truth that any account that flouts it is liable to engender confusion.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 5.1)
3. Truth / B. Truthmakers / 7. Making Modal Truths
'True at a possibility' means necessarily true if what is said had obtained [Rumfitt]
     Full Idea: A statement is 'true at a possibility' if, necessarily, things would have been as the statement (actually) says they are, had the possibility obtained.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6.6)
     A reaction: This is deliberately vague about what a 'possibility' is, but it is intended to be more than a property instantiation, and less than a possible world.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
     Full Idea: Venn Diagrams are a traditional method to test validity of syllogisms. There are three interlocking circles, one for each predicate, thus dividing the universe into eight possible basic elementary quantifications. Is the conclusion in a compartment?
     From: David Bostock (Intermediate Logic [1997], 3.8)
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Semantics for propositions: 1) validity preserves truth 2) non-contradition 3) bivalence 4) truth tables [Rumfitt]
     Full Idea: The classical semantics of natural language propositions says 1) valid arguments preserve truth, 2) no statement is both true and false, 3) each statement is either true or false, 4) the familiar truth tables.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
     Full Idea: 'Disjunctive Normal Form' (DNF) is rearranging the occurrences of ∧ and ∨ so that no conjunction sign has any disjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
     Full Idea: 'Conjunctive Normal Form' (CNF) is rearranging the occurrences of ∧ and ∨ so that no disjunction sign has any conjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
     Full Idea: The Principle of Disjunction says that Γ,φ∨ψ |= iff Γ,φ |= and Γ,ψ |=.
     From: David Bostock (Intermediate Logic [1997], 2.5.G)
     A reaction: That is, a disjunction leads to a contradiction if they each separately lead to contradictions.
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
     Full Idea: The Principle of Assumptions says that any formula entails itself, i.e. φ |= φ. The principle depends just upon the fact that no interpretation assigns both T and F to the same formula.
     From: David Bostock (Intermediate Logic [1997], 2.5.A)
     A reaction: Thus one can introduce φ |= φ into any proof, and then use it to build more complex sequents needed to attain a particular target formula. Bostock's principle is more general than anything in Lemmon.
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
     Full Idea: The Principle of Thinning says that if a set of premisses entails a conclusion, then adding further premisses will still entail the conclusion. It is 'thinning' because it makes a weaker claim. If γ|=φ then γ,ψ|= φ.
     From: David Bostock (Intermediate Logic [1997], 2.5.B)
     A reaction: It is also called 'premise-packing'. It is the characteristic of a 'monotonic' logic - where once something is proved, it stays proved, whatever else is introduced.
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
     Full Idea: The Conditional Principle says that Γ |= φ→ψ iff Γ,φ |= ψ. With the addition of negation, this implies φ,φ→ψ |= ψ, which is 'modus ponens'.
     From: David Bostock (Intermediate Logic [1997], 2.5.H)
     A reaction: [Second half is in Ex. 2.5.4]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
     Full Idea: The Principle of Cutting is the general point that entailment is transitive, extending this to cover entailments with more than one premiss. Thus if γ |= φ and φ,Δ |= ψ then γ,Δ |= ψ. Here φ has been 'cut out'.
     From: David Bostock (Intermediate Logic [1997], 2.5.C)
     A reaction: It might be called the Principle of Shortcutting, since you can get straight to the last conclusion, eliminating the intermediate step.
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
     Full Idea: The Principle of Negation says that Γ,¬φ |= iff Γ |= φ. We also say that φ,¬φ |=, and hence by 'thinning on the right' that φ,¬φ |= ψ, which is 'ex falso quodlibet'.
     From: David Bostock (Intermediate Logic [1997], 2.5.E)
     A reaction: That is, roughly, if the formula gives consistency, the negation gives contradiction. 'Ex falso' says that anything will follow from a contradiction.
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
     Full Idea: The Principle of Conjunction says that Γ |= φ∧ψ iff Γ |= φ and Γ |= ψ. This implies φ,ψ |= φ∧ψ, which is ∧-introduction. It is also implies ∧-elimination.
     From: David Bostock (Intermediate Logic [1997], 2.5.F)
     A reaction: [Second half is Ex. 2.5.3] That is, if they are entailed separately, they are entailed as a unit. It is a moot point whether these principles are theorems of propositional logic, or derivation rules.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
'Absolute necessity' would have to rest on S5 [Rumfitt]
     Full Idea: If there is such a notion as 'absolute necessity', its logic is surely S5.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: There are plenty of people (mainly in the strict empiricist tradition) who don't believe in 'absolute' necessity.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is the second-order part of intuitionistic logic which actually negates some classical theorems [Rumfitt]
     Full Idea: Although intuitionistic propositional and first-order logics are sub-systems of the corresponding classical systems, intuitionistic second-order logic affirms the negations of some classical theorems.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
Intuitionists can accept Double Negation Elimination for decidable propositions [Rumfitt]
     Full Idea: Double Negation Elimination is a rule of inference which the classicist accepts without restriction, but which the intuitionist accepts only for decidable propositions.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This cures me of my simplistic understanding that intuitionists just reject the rules about double negation.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
     Full Idea: A 'free' logic is one in which names are permitted to be empty. A 'universally free' logic is one in which the domain of an interpretation may also be empty.
     From: David Bostock (Intermediate Logic [1997], 8.6)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Most set theorists doubt bivalence for the Continuum Hypothesis, but still use classical logic [Rumfitt]
     Full Idea: Many set theorists doubt if the Generalised Continuum Hypothesis must be either true or false; certainly, its bivalence is far from obvious. All the same, almost all set theorists use classical logic in their proofs.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: His point is that classical logic is usually taken to rest on bivalence. He offers the set theorists a helping hand, by defending classical logic without resorting to bivalence.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The iterated conception of set requires continual increase in axiom strength [Rumfitt]
     Full Idea: We are doomed to postulate an infinite sequence of successively stronger axiom systems as we try to spell out what is involved in iterating the power set operation 'as far as possible'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.3)
     A reaction: [W.W. Tait is behind this idea] The problem with set theory, then, especially as a foundation of mathematics, is that it doesn't just expand, but has to keep reinventing itself. The 'large cardinal axioms' are what is referred to.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
A set may well not consist of its members; the empty set, for example, is a problem [Rumfitt]
     Full Idea: There seem strong grounds for rejecting the thesis that a set consists of its members. For one thing, the empty set is a perpetual embarrassment for the thesis.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: Rumfitt also says that if 'red' has an extension, then membership of that set must be vague. Extensional sets are precise because their objects are decided in advance, but intensional (or logical) sets, decided by a predicate, can be vague.
A set can be determinate, because of its concept, and still have vague membership [Rumfitt]
     Full Idea: Vagueness in respect of membership is consistent with determinacy of the set's identity, so long as a set's identity is taken to consist, not in its having such-and-such members, but in its being the extension of the concept A.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.4)
     A reaction: To be determinate, it must be presumed that there is some test which will decide what falls under the concept. The rule can say 'if it is vague, reject it' or 'if it is vague, accept it'. Without one of those, how could the set have a clear identity?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
If the totality of sets is not well-defined, there must be doubt about the Power Set Axiom [Rumfitt]
     Full Idea: Someone who is sympathetic to the thesis that the totality of sets is not well-defined ought to concede that we have no reason to think that the Power Set Axiom is true.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.6)
     A reaction: The point is that it is only this Axiom which generates the vast and expanding totality. In principle it is hard, though, to see what is intrinsically wrong with the operation of taking the power set of a set. Hence 'limitation of size'?
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
     Full Idea: On the conception of logic recommended here, logical laws are higher-order laws that can be applied to expand the range of any deductive principles.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: You need the concept of a 'deductive principle' to get this going, but I take it that might be directly known, rather than derived from a law.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
     Full Idea: The most fundamental notion in classical logic is that of truth.
     From: David Bostock (Intermediate Logic [1997], 1.1)
     A reaction: The opening sentence of his book. Hence the first half of the book is about semantics, and only the second half deals with proof. Compare Idea 10282. The thought seems to be that you could leave out truth, but that makes logic pointless.
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
     Full Idea: In very general terms, we cannot express the distinction between what is finite and what is infinite without moving essentially beyond the resources available in elementary logic.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: This observation concludes a discussion of Compactness in logic.
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
     Full Idea: Discourse about fictional characters leads to a breakdown of elementary logic. We accept P or ¬P if the relevant story says so, but P∨¬P will not be true if the relevant story says nothing either way, and P∧¬P is true if the story is inconsistent.
     From: David Bostock (Intermediate Logic [1997], 8.5)
     A reaction: I really like this. Does one need to invent a completely new logic for fictional characters? Or must their logic be intuitionist, or paraconsistent, or both?
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
     Full Idea: I think it is a strategic mistake to rest the case for classical logic on the Principle of Bivalence: the soundness of the classical logic rules is far more compelling than the truth of Bivalence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: The 'rules' to which he is referring are those of 'natural deduction', which make very few assumptions, and are intended to be intuitively appealing.
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
     Full Idea: There is not the slightest prospect of proving that the rules of classical logic are sound. ….All that the defender of classical logic can do is scrutinize particular attacks and try to repel them.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This is the agenda for Rumfitt's book.
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
     Full Idea: If we specify the senses of the connectives by way of the standard truth-tables, then we must justify classical logic only by appeal to the Principle of Bivalence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7)
     A reaction: Rumfitt proposes to avoid the truth-tables, and hence not to rely on Bivalence for his support of classical logic. He accepts that Bivalence is doubtful, citing the undecidability of the Continuum Hypothesis as a problem instance.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence is a relation that can extended into further statements [Rumfitt]
     Full Idea: Logical consequence, I argue, is distinguished from other implication relations by the fact that logical laws may be applied in extending any implication relation so that it applies among some complex statements involving logical connectives.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: He offers implication in electronics as an example of a non-logical implication relation. This seems to indicate that logic must be monotonic, that consequence is transitive, and that the Cut Law always applies.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
     Full Idea: The syntactic turnstile |- φ means 'There is a proof of φ' (in the system currently being considered). Another way of saying the same thing is 'φ is a theorem'.
     From: David Bostock (Intermediate Logic [1997], 5.1)
Normal deduction presupposes the Cut Law [Rumfitt]
     Full Idea: Our deductive practices seem to presuppose the Cut Law.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.3)
     A reaction: That is, if you don't believe that deductions can be transitive (and thus form a successful chain of implications), then you don't really believe in deduction. It remains a well known fact that you can live without the Cut Law.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
     Full Idea: The classical definition of validity counts an argument as valid if and only if the conclusion does in fact follow from the premises, whether or not the argument contains any demonstration of this fact.
     From: David Bostock (Intermediate Logic [1997], 1.2)
     A reaction: Hence validity is given by |= rather than by |-. A common example is 'it is red so it is coloured', which seems true but beyond proof. In the absence of formal proof, you wonder whether validity is merely a psychological notion.
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
     Full Idea: In practice we avoid quotation marks and explicitly set-theoretic notation that explaining |= as 'entails' appears to demand. Hence it seems more natural to explain |= as simply representing the word 'therefore'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
     A reaction: Not sure I quite understand that, but I have trained myself to say 'therefore' for the generic use of |=. In other consequences it seems better to read it as 'semantic consequence', to distinguish it from |-.
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
     Full Idea: If we write Γ |= φ, with one formula to the right, then the turnstile abbreviates 'entails'. For a sequent of the form Γ |= it can be read as 'is inconsistent'. For |= φ we read it as 'valid'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
     Full Idea: Modus Ponens is equivalent to the converse of the Deduction Theorem, namely 'If Γ |- φ→ψ then Γ,φ|-ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. See 13614 for Modus Ponens.
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
     Full Idea: The Rule of Detachment is a version of Modus Ponens, and says 'If |=φ and |=φ→ψ then |=ψ'. This has no assumptions. Modus Ponens is the more general rule that 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: Modus Ponens is actually designed for use in proof based on assumptions (which isn't always the case). In Detachment the formulae are just valid, without dependence on assumptions to support them.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
     Full Idea: I do not regard Bivalence, when applied to vague statements, as an intuitively compelling principle which we ought to try to preserve.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.7)
     A reaction: The point of Rumfitt's book is to defend classical logic despite failures of bivalence. He also cites undecidable concepts such as the Continuum Hypothesis.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
     Full Idea: We shall use 'a=b' as short for 'a is the same thing as b'. The sign '=' thus expresses a particular two-place predicate. Officially we will use 'I' as the identity predicate, so that 'Iab' is as formula, but we normally 'abbreviate' this to 'a=b'.
     From: David Bostock (Intermediate Logic [1997], 8.1)
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
     Full Idea: We usually take these two principles together as the basic principles of identity: |= α=α and α=β |= φ(α/ξ) ↔ φ(β/ξ). The second (with scant regard for history) is known as Leibniz's Law.
     From: David Bostock (Intermediate Logic [1997], 8.1)
If we are to express that there at least two things, we need identity [Bostock]
     Full Idea: To say that there is at least one thing x such that Fx we need only use an existential quantifier, but to say that there are at least two things we need identity as well.
     From: David Bostock (Intermediate Logic [1997], 8.1)
     A reaction: The only clear account I've found of why logic may need to be 'with identity'. Without it, you can only reason about one thing or all things. Presumably plural quantification no longer requires '='?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
     Full Idea: The usual view of the meaning of truth-functors is that each is defined by its own truth-table, independently of any other truth-functor.
     From: David Bostock (Intermediate Logic [1997], 2.7)
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
     Full Idea: There is no prospect whatever of giving the sense of a logical constant without using that very constant, and much else besides, in the metalinguistic principle that specifies that sense.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
     Full Idea: We can talk of a 'zero-place' function, which is a new-fangled name for a familiar item; it just has a single value, and so it has the same role as a name.
     From: David Bostock (Intermediate Logic [1997], 8.2)
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
     Full Idea: Usually we allow that a function is defined for arguments of a suitable kind (a 'partial' function), but we can say that each function has one value for any object whatever, from the whole domain that our quantifiers range over (a 'total' function).
     From: David Bostock (Intermediate Logic [1997], 8.2)
     A reaction: He points out (p.338) that 'the father of..' is a functional expression, but it wouldn't normally take stones as input, so seems to be a partial function. But then it doesn't even take all male humans either. It only takes fathers!
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
     Full Idea: The important thing about a name, for logical purposes, is that it is used to make a singular reference to a particular object; ..we say that any expression too may be counted as a name, for our purposes, it it too performs the same job.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He cites definite descriptions as the most notoriously difficult case, in deciding whether or not they function as names. I takes it as pretty obvious that sometimes they do and sometimes they don't (in ordinary usage).
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
     Full Idea: An expression is not counted as a name unless it succeeds in referring to an object, i.e. unless there really is an object to which it refers.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: His 'i.e.' makes the existence condition sound sufficient, but in ordinary language you don't succeed in referring to 'that man over there' just because he exists. In modal contexts we presumably refer to hypothetical objects (pace Lewis).
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
     Full Idea: Although a definite description looks like a complex name, and in many ways behaves like a name, still it cannot be a name if names must always refer to objects. Russell gave the first proposal for handling such expressions.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: I take the simple solution to be a pragmatic one, as roughly shown by Donnellan, that sometimes they are used exactly like names, and sometimes as something else. The same phrase can have both roles. Confusing for logicians. Tough.
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
     Full Idea: Because of the scope problem, it now seems better to 'parse' definition descriptions not as names but as quantifiers. 'The' is to be treated in the same category as acknowledged quantifiers like 'all' and 'some'. We write Ix - 'for the x such that..'.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: This seems intuitively rather good, since quantification in normal speech is much more sophisticated than the crude quantification of classical logic. But the fact is that they often function as names (but see Idea 13817).
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
     Full Idea: In practice, definite descriptions are for the most part treated as names, since this is by far the most convenient notation (even though they have scope). ..When a description is uniquely satisfied then it does behave like a name.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: Apparent names themselves have problems when they wander away from uniquely picking out one thing, as in 'John Doe'.
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
     Full Idea: If it is really true that definite descriptions have scopes whereas names do not, then Russell must be right to claim that definite descriptions are not names. If, however, this is not true, then it does no harm to treat descriptions as complex names.
     From: David Bostock (Intermediate Logic [1997], 8.8)
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
     Full Idea: It is natural to suppose one only uses a definite description when one believes it describes only one thing, but exceptions are 'there is no such thing as the greatest prime number', or saying something false where the reference doesn't occur.
     From: David Bostock (Intermediate Logic [1997], 8.3)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
     Full Idea: In orthodox logic names are not regarded as having scope (for example, in where a negation is placed), whereas on Russell's theory definite descriptions certainly do. Russell had his own way of dealing with this.
     From: David Bostock (Intermediate Logic [1997], 8.3)
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
     Full Idea: A formula is said to be in 'prenex normal form' (PNF) iff all its quantifiers occur in a block at the beginning, so that no quantifier is in the scope of any truth-functor.
     From: David Bostock (Intermediate Logic [1997], 3.7)
     A reaction: Bostock provides six equivalences which can be applied to manouevre any formula into prenex normal form. He proves that every formula can be arranged in PNF.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
     Full Idea: We can show that if empty domains are permitted, then empty names must be permitted too.
     From: David Bostock (Intermediate Logic [1997], 8.4)
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
     Full Idea: An 'informal proof' is not in any particular proof system. One may use any rule of proof that is 'sufficiently obvious', and there is quite a lot of ordinary English in the proof, explaining what is going on at each step.
     From: David Bostock (Intermediate Logic [1997], 8.1)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
     Full Idea: New axiom-schemas for quantifiers: (A4) |-∀ξφ → φ(α/ξ), (A5) |-∀ξ(ψ→φ) → (ψ→∀ξφ), plus the rule GEN: If |-φ the |-∀ξφ(ξ/α).
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: This follows on from Idea 13610, where he laid out his three axioms and one rule for propositional (truth-functional) logic. This Idea plus 13610 make Bostock's proposed axiomatisation of first-order logic.
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
     Full Idea: Notably axiomatisations of first-order logic are by Frege (1879), Russell and Whitehead (1910), Church (1956), Lukasiewicz and Tarski (1930), Lukasiewicz (1936), Nicod (1917), Kleene (1952) and Quine (1951). Also Bostock (1997).
     From: David Bostock (Intermediate Logic [1997], 5.8)
     A reaction: My summary, from Bostock's appendix 5.8, which gives details of all of these nine systems. This nicely illustrates the status and nature of axiom systems, which have lost the absolute status they seemed to have in Euclid.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
     Full Idea: If a group of formulae prove a conclusion, we can 'conditionalize' this into a chain of separate inferences, which leads to the Deduction Theorem (or Conditional Proof), that 'If Γ,φ|-ψ then Γ|-φ→ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: This is the rule CP (Conditional Proof) which can be found in the rules for propositional logic I transcribed from Lemmon's book.
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
     Full Idea: By repeated transformations using the Deduction Theorem, any proof from assumptions can be transformed into a fully conditionalized proof, which is then an axiomatic proof.
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: Since proof using assumptions is perhaps the most standard proof system (e.g. used in Lemmon, for many years the standard book at Oxford University), the Deduction Theorem is crucial for giving it solid foundations.
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
     Full Idea: Like the Deduction Theorem, one form of Reductio ad Absurdum (If Γ,φ|-[absurdity] then Γ|-¬φ) 'discharges' an assumption. Assume φ and obtain a contradiction, then we know ¬&phi, without assuming φ.
     From: David Bostock (Intermediate Logic [1997], 5.7)
     A reaction: Thus proofs from assumption either arrive at conditional truths, or at truths that are true irrespective of what was initially assumed.
The Deduction Theorem greatly simplifies the search for proof [Bostock]
     Full Idea: Use of the Deduction Theorem greatly simplifies the search for proof (or more strictly, the task of showing that there is a proof).
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. Bostock is referring to axiomatic proof, where it can be quite hard to decide which axioms are relevant. The Deduction Theorem enables the making of assumptions.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
     Full Idea: 'Introduction rules' state the conditions under which one may deduce a conclusion whose dominant logical operator is the connective. 'Elimination rules' state what may be deduced from some premises, where the major premise is dominated by the connective.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: So Introduction gives conditions for deduction, and Elimination says what can actually be deduced. If my magic wand can turn you into a frog (introduction), and so I turn you into a frog, how does that 'eliminate' the wand?
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
     Full Idea: Natural deduction takes the notion of proof from assumptions as a basic notion, ...so it will use rules for use in proofs from assumptions, and axioms (as traditionally understood) will have no role to play.
     From: David Bostock (Intermediate Logic [1997], 6.1)
     A reaction: The main rules are those for introduction and elimination of truth functors.
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
     Full Idea: Many books take RAA (reductio) and DNE (double neg) as the natural deduction introduction- and elimination-rules for negation, but RAA is not a natural introduction rule. I prefer TND (tertium) and EFQ (ex falso) for ¬-introduction and -elimination.
     From: David Bostock (Intermediate Logic [1997], 6.2)
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
     Full Idea: When looking for a proof of a sequent, the best we can do in natural deduction is to work simultaneously in both directions, forward from the premisses, and back from the conclusion, and hope they will meet in the middle.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
     Full Idea: Natural deduction adopts for → as rules the Deduction Theorem and Modus Ponens, here called →I and →E. If ψ follows φ in the proof, we can write φ→ψ (→I). φ and φ→ψ permit ψ (→E).
     From: David Bostock (Intermediate Logic [1997], 6.2)
     A reaction: Natural deduction has this neat and appealing way of formally introducing or eliminating each connective, so that you know where you are, and you know what each one means.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
     Full Idea: A tableau proof is a proof by reduction ad absurdum. One begins with an assumption, and one develops the consequences of that assumption, seeking to derive an impossible consequence.
     From: David Bostock (Intermediate Logic [1997], 4.1)
A completed open branch gives an interpretation which verifies those formulae [Bostock]
     Full Idea: An open branch in a completed tableau will always yield an interpretation that verifies every formula on the branch.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: In other words the open branch shows a model which seems to work (on the available information). Similarly a closed branch gives a model which won't work - a counterexample.
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
     Full Idea: Rules for semantic tableaus are of two kinds - non-branching rules and branching rules. The first allow the addition of further lines, and the second requires splitting the branch. A branch which assigns contradictory values to a formula is 'closed'.
     From: David Bostock (Intermediate Logic [1997], 4.1)
     A reaction: [compressed] Thus 'and' stays on one branch, asserting both formulae, but 'or' splits, checking first one and then the other. A proof succeeds when all the branches are closed, showing that the initial assumption leads only to contradictions.
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
     Full Idea: In a tableau system no sequent is established until the final step of the proof, when the last branch closes, and until then we are simply exploring a hypothesis.
     From: David Bostock (Intermediate Logic [1997], 7.3)
     A reaction: This compares sharply with a sequence calculus, where every single step is a conclusive proof of something. So use tableaux for exploring proofs, and then sequence calculi for writing them up?
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
     Full Idea: With semantic tableaux there are recipes for proof-construction that we can operate, whereas with natural deduction there are not.
     From: David Bostock (Intermediate Logic [1997], 6.5)
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
     Full Idea: When the only rule of inference is Modus Ponens, the branches of a tree proof soon spread too wide for comfort.
     From: David Bostock (Intermediate Logic [1997], 6.4)
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
     Full Idea: In their original setting, all the tableau rules are elimination rules, allowing us to replace a longer formula by its shorter components.
     From: David Bostock (Intermediate Logic [1997], 7.3)
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
     Full Idea: A sequent calculus keeps an explicit record of just what sequent is established at each point in a proof. Every line is itself the sequent proved at that point. It is not a linear sequence or array of formulae, but a matching array of whole sequents.
     From: David Bostock (Intermediate Logic [1997], 7.1)
A sequent calculus is good for comparing proof systems [Bostock]
     Full Idea: A sequent calculus is a useful tool for comparing two systems that at first look utterly different (such as natural deduction and semantic tableaux).
     From: David Bostock (Intermediate Logic [1997], 7.2)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
     Full Idea: There are two approaches to an 'interpretation' of a logic: the first method assigns objects to names, and then defines connectives and quantifiers, focusing on truth; the second assigns objects to variables, then variables to names, using satisfaction.
     From: report of David Bostock (Intermediate Logic [1997], 3.4) by PG - Db (lexicon)
     A reaction: [a summary of nine elusive pages in Bostock] He says he prefers the first method, but the second method is more popular because it handles open formulas, by treating free variables as if they were names.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
     Full Idea: Gentzen's way of formalising logic has accustomed people to the idea that logical truths are simply the by-products of logical rules, that arise when all the assumptions on which a conclusion rests have been discharged.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.5)
     A reaction: This is the key belief of those who favour the natural deduction account of logic. If you really believe in separate logic truths, then you can use them as axioms.
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
     Full Idea: Extensionality is built into the semantics of ordinary logic. When a name-letter is interpreted as denoting something, we just provide the object denoted. All that we provide for a one-place predicate-letter is the set of objects that it is true of..
     From: David Bostock (Intermediate Logic [1997])
     A reaction: Could we keep the syntax of ordinary logic, and provide a wildly different semantics, much closer to real life? We could give up these dreadful 'objects' that Frege lumbered us with. Logic for processes, etc.
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
     Full Idea: If two names refer to the same object, then in any proposition which contains either of them the other may be substituted in its place, and the truth-value of the proposition of the proposition will be unaltered. This is the Principle of Extensionality.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He acknowledges that ordinary language is full of counterexamples, such as 'he doesn't know the Morning Star and the Evening Star are the same body' (when he presumably knows that the Morning Star is the Morning Star). This is logic. Like maths.
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
     Full Idea: Any system of proof S is said to be 'negation-consistent' iff there is no formula such that |-(S)φ and |-(S)¬φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Compare Idea 13542. This version seems to be a 'strong' version, as it demands a higher standard than 'absolute consistency'. Both halves of the condition would have to be established.
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
     Full Idea: Any system of proof S is said to be 'absolutely consistent' iff it is not the case that for every formula we have |-(S)φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Bostock notes that a sound system will be both 'negation-consistent' (Idea 13541) and absolutely consistent. 'Tonk' systems can be shown to be unsound because the two come apart.
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
     Full Idea: 'Γ |=' means 'Γ is a set of closed formulae, and there is no (standard) interpretation in which all of the formulae in Γ are true'. We abbreviate this last to 'Γ is inconsistent'.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: This is a semantic approach to inconsistency, in terms of truth, as opposed to saying that we cannot prove both p and ¬p. I take this to be closer to the true concept, since you need never have heard of 'proof' to understand 'inconsistent'.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
     Full Idea: Being 'compact' means that if we have an inconsistency or an entailment which holds just because of the truth-functors and quantifiers involved, then it is always due to a finite number of the propositions in question.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: Bostock says this is surprising, given the examples 'a is not a parent of a parent of b...' etc, where an infinity seems to establish 'a is not an ancestor of b'. The point, though, is that this truth doesn't just depend on truth-functors and quantifiers.
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
     Full Idea: The logic of truth-functions is compact, which means that sequents with infinitely many formulae on the left introduce nothing new. Hence we can confine our attention to finite sequents.
     From: David Bostock (Intermediate Logic [1997], 5.5)
     A reaction: This makes it clear why compactness is a limitation in logic. If you want the logic to be unlimited in scope, it isn't; it only proves things from finite numbers of sequents. This makes it easier to prove completeness for the system.
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
     Full Idea: Monotonicity seems to mark the difference between cases in which a guarantee obtains and those where the premises merely provide inductive support for a conclusion.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.3)
     A reaction: Hence it is plausible to claim that 'non-monotonic logic' is a contradiction in terms.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Maybe an ordinal is a property of isomorphic well-ordered sets, and not itself a set [Rumfitt]
     Full Idea: Menzel proposes that an ordinal is something isomorphic well-ordered sets have in common, so while an ordinal can be represented as a set, it is not itself a set, but a 'property' of well-ordered sets.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.2)
     A reaction: [C.Menzel 1986] This is one of many manoeuvres available if you want to distance mathematics from set theory.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals do not stand in a determinate order relation to zero [Rumfitt]
     Full Idea: Infinitesimals do not stand in a determinate order relation to zero: we cannot say an infinitesimal is either less than zero, identical to zero, or greater than zero. ….Infinitesimals are so close to zero as to be theoretically indiscriminable from it.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.4)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Cantor and Dedekind aimed to give analysis a foundation in set theory (rather than geometry) [Rumfitt]
     Full Idea: One of the motivations behind Cantor's and Dedekind's pioneering explorations in the field was the ambition to give real analysis a new foundation in set theory - and hence a foundation independent of geometry.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 9.6)
     A reaction: Rumfitt is inclined to think that the project has failed, although a weaker set theory than ZF might do the job (within limits).
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
     Full Idea: The principle of mathematical (or ordinary) induction says suppose the first number, 0, has a property; suppose that if any number has that property, then so does the next; then it follows that all numbers have the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Ordinary induction is also known as 'weak' induction. Compare Idea 13359 for 'strong' or complete induction. The number sequence must have a first element, so this doesn't work for the integers.
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
     Full Idea: The principle of complete induction says suppose that for every number, if all the numbers less than it have a property, then so does it; it then follows that every number has the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Complete induction is also known as 'strong' induction. Compare Idea 13358 for 'weak' or mathematical induction. The number sequence need have no first element.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
     Full Idea: It is easy to fall into the error of supposing that a relation which is both transitive and symmetrical must also be reflexive.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: Compare Idea 14430! Transivity will take you there, and symmetricality will get you back, but that doesn't entitle you to take the shortcut?
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
     Full Idea: A relation is 'one-many' if for anything on the right there is at most one on the left (∀xyz(Rxz∧Ryz→x=y), and is 'many-one' if for anything on the left there is at most one on the right (∀xyz(Rzx∧Rzy→x=y).
     From: David Bostock (Intermediate Logic [1997], 8.1)
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
An object that is not clearly red or orange can still be red-or-orange, which sweeps up problem cases [Rumfitt]
     Full Idea: A borderline red-orange object satisfies the disjunctive predicate 'red or orange', even though it satisfies neither 'red' or 'orange'. When applied to adjacent bands of colour, the disjunction 'sweeps up' objects which are reddish-orange.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.5)
     A reaction: Rumfitt offers a formal principle in support of this. There may be a problem with 'adjacent'. Different colour systems will place different colours adjacent to red. In other examples the idea of 'adjacent' may make no sense. Rumfitt knows this!
The extension of a colour is decided by a concept's place in a network of contraries [Rumfitt]
     Full Idea: On Sainsbury's picture, a colour has an extension that it has by virtue of its place in a network of contrary colour classifications. Something is determined to be 'red' by being a colour incompatible with orange, yellow, green, blue, indigo and violet.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.5)
     A reaction: Along with Idea 18839, this gives quite a nice account of vagueness, by requiring a foil to the vague predicate, and using the disjunction of the predicate and its foil to handle anything caught in between them.
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
     Full Idea: If even non-existent things are still counted as self-identical, then all non-existent things must be counted as identical with one another, so there is at most one non-existent thing. We might arbitrarily choose zero, or invent 'the null object'.
     From: David Bostock (Intermediate Logic [1997], 8.6)
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical modalities respect the actual identities of things [Rumfitt]
     Full Idea: The central characteristic mark of metaphysical necessity is that a metaphysical possibility respects the actual identities of things - in a capacious sense of 'thing'.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.4)
     A reaction: He contrast this with logical necessity, and concludes that some truths are metaphysically but not logically necessary, such as 'Hesperus is identical with Phosphorus'. Personally I like the idea of a 'necessity-maker', so that fits.
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
     Full Idea: The common Rule of Necessitation says that what can be proved is necessary, but this is incorrect if we do not permit empty names. The most straightforward answer is to modify elementary logic so that only necessary truths can be proved.
     From: David Bostock (Intermediate Logic [1997], 8.4)
S5 is the logic of logical necessity [Rumfitt]
     Full Idea: I accept the widely held thesis that S5 is the logic of logical necessity.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6.4 n16)
     A reaction: It seems plausible that S5 is also the logic of metaphysical necessity, but that does not make them the same thing. The two types of necessity have two different grounds.
10. Modality / B. Possibility / 1. Possibility
Since possibilities are properties of the world, calling 'red' the determination of a determinable seems right [Rumfitt]
     Full Idea: Some philosophers describe the colour scarlet as a determination of the determinable red; since the ways the world might be are naturally taken to be properties of the world, it helps to bear this analogy in mind.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6.4)
     A reaction: This fits nicely with the disposition accounts of modality which I favour. Hence being 'coloured' is a real property of objects, even in the absence of the name of its specific colour.
If two possibilities can't share a determiner, they are incompatible [Rumfitt]
     Full Idea: Two possibilities are incompatible when no possibility determines both.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.1)
     A reaction: This strikes me as just the right sort of language for building up a decent metaphysical picture of the world, which needs to incorporate possibilities as well as actualities.
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possibilities are like possible worlds, but not fully determinate or complete [Rumfitt]
     Full Idea: Possibilities are things of the same general character as possible worlds, on one popular conception of the latter. They differ from worlds, though, in that they are not required to be fully determinate or complete.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 6)
     A reaction: A rather promising approach to such things, even though a possibility is fairly determinate at its core, but very vague at the edges. It is possible that the UK parliament might be located in Birmingham, for example. Is this world 'complete'?
11. Knowledge Aims / A. Knowledge / 2. Understanding
Medieval logicians said understanding A also involved understanding not-A [Rumfitt]
     Full Idea: Mediaeval logicians had a principle, 'Eadem est scientia oppositorum': in order to attain a clear conception of what it is for A to be the case, one needs to attain a conception of what it is for A not to be the case.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.2)
     A reaction: Presumably 'understanding' has to be a fairly comprehensive grasp of the matter, so understanding the negation sounds like a reasonable requirement for the real thing.
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In English 'evidence' is a mass term, qualified by 'little' and 'more' [Rumfitt]
     Full Idea: In English, the word 'evidence' behaves as a mass term: we speak of someone's having little evidence for an assertion, and of one thinker's having more evidence than another for a claim. One the other hand, we also speak of 'pieces' of evidence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 5.2)
     A reaction: And having 'more' evidence does not mean having a larger number of pieces of evidence, so it really is like an accumulated mass.
16. Persons / B. Nature of the Self / 6. Self as Higher Awareness
Persons are distinguished by a capacity for second-order desires [Frankfurt]
     Full Idea: The essential difference between persons and other creatures is in the structure of the will, with their peculiar characteristic of being able to form 'second-order desires'.
     From: Harry G. Frankfurt (Freedom of the Will and concept of a person [1971], Intro)
     A reaction: There are problems with this - notably that all strategies of this kind just shift the problem up to the next order, without solving it - but this still strikes me as a very promising line of thinking when trying to understand ourselves. See Idea 9266.
A person essentially has second-order volitions, and not just second-order desires [Frankfurt]
     Full Idea: It is having second-order volitions, and not having second-order desires generally, that I regard as essential to being a person.
     From: Harry G. Frankfurt (Freedom of the Will and concept of a person [1971], §II)
     A reaction: Watson criticises Frankfurt for just pushing the problem up to the the next level, but Frankfurt is not offering to explain the will. He merely notes that this structure produces the sort of behaviour which is characteristic of persons, and he is right.
16. Persons / F. Free Will / 1. Nature of Free Will
Free will is the capacity to choose what sort of will you have [Frankfurt]
     Full Idea: The statement that a person enjoys freedom of the will means that he is free to want what he wants to want. More precisely, he is free to will what he wants to will, or to have the will he wants.
     From: Harry G. Frankfurt (Freedom of the Will and concept of a person [1971], §III)
     A reaction: A good proposal. It covers kleptomaniacs and drug addicts quite well. Thieves have second-order desires (to steal) of which kleptomaniacs are incapable. There is actually no such thing as free will, but this sort of thing will do.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
We understand conditionals, but disagree over their truth-conditions [Rumfitt]
     Full Idea: It is striking that our understanding of conditionals is not greatly impeded by widespread disagreement about their truth-conditions.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 4.2)
     A reaction: Compare 'if you dig there you might find gold' with 'if you dig there you will definitely find gold'. The second but not the first invites 'how do you know that?', implying truth. Two different ifs.
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
     Full Idea: A simple way of approaching the modern notion of a predicate is this: given any sentence which contains a name, the result of dropping that name and leaving a gap in its place is a predicate. Very different from predicates in Aristotle and Kant.
     From: David Bostock (Intermediate Logic [1997], 3.2)
     A reaction: This concept derives from Frege. To get to grips with contemporary philosophy you have to relearn all sorts of basic words like 'predicate' and 'object'.
19. Language / F. Communication / 3. Denial
The truth grounds for 'not A' are the possibilities incompatible with truth grounds for A [Rumfitt]
     Full Idea: The truth-grounds of '¬A' are precisely those possibilities that are incompatible with any truth-ground of A.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7.1)
     A reaction: This is Rumfitt's proposal for the semantics of 'not', based on the central idea of a possibility, rather than a possible world. The incompatibility tracks back to an absence of shared grounding.
20. Action / B. Preliminaries of Action / 2. Willed Action / a. Will to Act
The will is the effective desire which actually leads to an action [Frankfurt]
     Full Idea: A person's will is the effective desire which moves (or will or would move) a person all the way to action. The will is not coextensive with what an agent intends to do, since he may do something else instead.
     From: Harry G. Frankfurt (Freedom of the Will and concept of a person [1971], §I)
     A reaction: Essentially Hobbes's view, but with an arbitrary distinction added. If the desire is only definitely a 'will' if it really does lead to action, then it only becomes the will after the action starts. The error is thinking that will is all-or-nothing.
20. Action / B. Preliminaries of Action / 2. Willed Action / c. Agent causation
Freedom of action needs the agent to identify with their reason for acting [Frankfurt, by Wilson/Schpall]
     Full Idea: Frankfurt says that basic issues concerning freedom of action presuppose and give weight to a concept of 'acting on a desire with which the agent identifies'.
     From: report of Harry G. Frankfurt (Freedom of the Will and concept of a person [1971]) by Wilson,G/Schpall,S - Action 1
     A reaction: [the cite Frankfurt 1988 and 1999] I'm not sure how that works when performing a grim duty, but it sounds quite plausible.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / g. Moral responsibility
A 'wanton' is not a person, because they lack second-order volitions [Frankfurt]
     Full Idea: I use the term 'wanton' to refer to agents who have first-order desires but who are not persons because, whether or not they have desires of the second-order, they have no second-order volitions.
     From: Harry G. Frankfurt (Freedom of the Will and concept of a person [1971], §II)
     A reaction: He seems to be describing someone who behaves like an animal, performing actions without ever stopping to think about them. Presumably some persons occasionally become wantons, if, for example, they have an anger problem.
A person may be morally responsible without free will [Frankfurt]
     Full Idea: It is not true that a person is morally responsible for what he has done only if his will was free when he did it. He may be morally responsible for having done it even though his will was not free at all.
     From: Harry G. Frankfurt (Freedom of the Will and concept of a person [1971], §IV)
     A reaction: Frankfurt seems to be one of the first to assert this break with the traditional view. Good for him. I take moral responsibility to hinge on an action being caused by a person, but not with a mystical view of what a person is.