Combining Texts

All the ideas for 'The Logic of Boundaryless Concepts', 'What is Logic?' and 'Essays on Intellectual Powers 4: Conception'

unexpand these ideas     |    start again     |     specify just one area for these texts


17 ideas

2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic guides thinking, but it isn't a substitute for it [Rumfitt]
     Full Idea: Logic is part of a normative theory of thinking, not a substitute for thinking.
     From: Ian Rumfitt (The Logic of Boundaryless Concepts [2007], p.13)
     A reaction: There is some sort of logicians' dream, going back to Leibniz, of a reasoning engine, which accepts propositions and outputs inferences. I agree with this idea. People who excel at logic are often, it seems to me, modest at philosophy.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague membership of sets is possible if the set is defined by its concept, not its members [Rumfitt]
     Full Idea: Vagueness in respect of membership is consistency with determinacy of the set's identity, so long as a set's identity is taken to consist, not in its having such-and-such members, but in its being the extension of a concept.
     From: Ian Rumfitt (The Logic of Boundaryless Concepts [2007], p.5)
     A reaction: I find this view of sets much more appealing than the one that identifies a set with its members. The empty set is less of a problem, as well as non-existents. Logicians prefer the extensional view because it is tidy.
9. Objects / D. Essence of Objects / 4. Essence as Definition
Objects have an essential constitution, producing its qualities, which we are too ignorant to define [Reid]
     Full Idea: Individuals and objects have a real essence, or constitution of nature, from which all their qualities flow: but this essence our faculties do not comprehend. They are therefore incapable of definition.
     From: Thomas Reid (Essays on Intellectual Powers 4: Conception [1785], 1)
     A reaction: Aha - he's one of us! I prefer the phrase 'essential nature' of an object, which is understood, I think, by everyone. I especially like the last bit, directed at those who mistakenly think that Aristotle identified the essence with the definition.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Impossibilites are easily conceived in mathematics and geometry [Reid, by Molnar]
     Full Idea: Reid pointed out how easily conceivable mathematical and geometric impossibilities are.
     From: report of Thomas Reid (Essays on Intellectual Powers 4: Conception [1785], IV.III) by George Molnar - Powers 11.3
     A reaction: The defence would be that you have to really really conceive them, and the only way the impossible can be conceived is by blurring it at the crucial point, or by claiming to conceive more than you actually can
19. Language / B. Reference / 1. Reference theories
Reference is by name, or a term-plus-circumstance, or ostensively, or by description [Reid]
     Full Idea: An individual is expressed by a proper name, or by a general word joined to distinguishing circumstances; if unknown, it may be pointed out to the senses; when beyond the reach of the senses it may be picked out by an imperfect but true description.
     From: Thomas Reid (Essays on Intellectual Powers 4: Conception [1785], 1)
     A reaction: [compressed] If Putnam, Kripke and Donnellan had read this paragraph they could have save themselves a lot of work! I take reference to be the activity of speakers and writers, and these are the main tools of the trade.
19. Language / B. Reference / 3. Direct Reference / c. Social reference
A word's meaning is the thing conceived, as fixed by linguistic experts [Reid]
     Full Idea: The meaning of a word (such as 'felony') is the thing conceived; and that meaning is the conception affixed to it by those who best understand the language.
     From: Thomas Reid (Essays on Intellectual Powers 4: Conception [1785], 1)
     A reaction: He means legal experts. This is precisely that same as Putnam's account of the meaning of 'elm tree'. His discussion here of reference is the earliest I have encountered, and it is good common sense (for which Reid is famous).