Combining Texts

All the ideas for 'Logical Consequence', 'Elements of Intuitionism' and 'Grundgesetze der Arithmetik 1 (Basic Laws)'

unexpand these ideas     |    start again     |     specify just one area for these texts


19 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'Equivocation' is when terms do not mean the same thing in premises and conclusion [Beall/Restall]
     Full Idea: 'Equivocation' is when the terms do not mean the same thing in the premises and in the conclusion.
     From: JC Beall / G Restall (Logical Consequence [2005], Intro)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Formal logic is invariant under permutations, or devoid of content, or gives the norms for thought [Beall/Restall]
     Full Idea: Logic is purely formal either when it is invariant under permutation of object (Tarski), or when it has totally abstracted away from all contents, or it is the constitutive norms for thought.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: [compressed] The third account sounds rather woolly, and the second one sounds like a tricky operation, but the first one sounds clear and decisive, so I vote for Tarski.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence needs either proofs, or absence of counterexamples [Beall/Restall]
     Full Idea: Technical work on logical consequence has either focused on proofs, where validity is the existence of a proof of the conclusions from the premises, or on models, which focus on the absence of counterexamples.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is either necessary truth preservation, or preservation based on interpretation [Beall/Restall]
     Full Idea: Two different views of logical consequence are necessary truth-preservation (based on modelling possible worlds; favoured by Realists), or truth-preservation based on the meanings of the logical vocabulary (differing in various models; for Anti-Realists).
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: Thus Dummett prefers the second view, because the law of excluded middle is optional. My instincts are with the first one.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
A step is a 'material consequence' if we need contents as well as form [Beall/Restall]
     Full Idea: A logical step is a 'material consequence' and not a formal one, if we need the contents as well as the structure or form.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Frege considered definite descriptions to be genuine singular terms [Frege, by Fitting/Mendelsohn]
     Full Idea: Frege (1893) considered a definite description to be a genuine singular term (as we do), so that a sentence like 'The present King of France is bald' would have the same logical form as 'Harry Truman is bald'.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by M Fitting/R Mendelsohn - First-Order Modal Logic
     A reaction: The difficulty is what the term refers to, and they embrace a degree of Meinongianism - that is that non-existent objects can still have properties attributed to them, and so can be allowed some sort of 'existence'.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Contradiction arises from Frege's substitutional account of second-order quantification [Dummett on Frege]
     Full Idea: The contradiction in Frege's system is due to the presence of second-order quantification, ..and Frege's explanation of the second-order quantifier, unlike that which he provides for the first-order one, appears to be substitutional rather than objectual.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], §25) by Michael Dummett - Frege philosophy of mathematics Ch.17
     A reaction: In Idea 9871 Dummett adds the further point that Frege lacks a clear notion of the domain of quantification. At this stage I don't fully understand this idea, but it is clearly of significance, so I will return to it.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A 'logical truth' (or 'tautology', or 'theorem') follows from empty premises [Beall/Restall]
     Full Idea: If a conclusion follows from an empty collection of premises, it is true by logic alone, and is a 'logical truth' (sometimes a 'tautology'), or, in the proof-centred approach, 'theorems'.
     From: JC Beall / G Restall (Logical Consequence [2005], 4)
     A reaction: These truths are written as following from the empty set Φ. They are just implications derived from the axioms and the rules.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are mathematical structures which interpret the non-logical primitives [Beall/Restall]
     Full Idea: Models are abstract mathematical structures that provide possible interpretations for each of the non-logical primitives in a formal language.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities, such as lengths or masses [Frege]
     Full Idea: If 'number' is the referent of a numerical symbol, a real number is the same as a ratio of quantities. ...A length can have to another length the same ratio as a mass to another mass.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], III.1.73), quoted by Michael Dummett - Frege philosophy of mathematics 21 'Frege's'
     A reaction: This is part of a critique of Cantor and the Cauchy series approach. Interesting that Frege, who is in the platonist camp, is keen to connect the real numbers with natural phenomena. He is always keen to keep touch with the application of mathematics.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
Platonists ruin infinity, which is precisely a growing structure which is never completed [Dummett]
     Full Idea: The platonist destroys the whole essence of infinity, which lies in the conception of a structure which is always in growth, precisely because the process of construction is never completed.
     From: Michael Dummett (Elements of Intuitionism [1977], p.57), quoted by Thomas J. McKay - Plural Predication
     A reaction: I don't warm to intuitionism, but I warm to this conception of infinity. Completed infinities are convenient reifications for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
We can't prove everything, but we can spell out the unproved, so that foundations are clear [Frege]
     Full Idea: It cannot be demanded that everything be proved, because that is impossible; but we can require that all propositions used without proof be expressly declared as such, so that we can see distinctly what the whole structure rests upon.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.2), quoted by J. Alberto Coffa - The Semantic Tradition from Kant to Carnap 7 'What'
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Hilbert proofs have simple rules and complex axioms, and natural deduction is the opposite [Beall/Restall]
     Full Idea: There are many proof-systems, the main being Hilbert proofs (with simple rules and complex axioms), or natural deduction systems (with few axioms and many rules, and the rules constitute the meaning of the connectives).
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Frege defined number in terms of extensions of concepts, but needed Basic Law V to explain extensions [Frege, by Hale/Wright]
     Full Idea: Frege opts for his famous definition of numbers in terms of extensions of the concept 'equal to the concept F', but he then (in 'Grundgesetze') needs a theory of extensions or classes, which he provided by means of Basic Law V.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by B Hale / C Wright - Intro to 'The Reason's Proper Study' §1
Frege ignored Cantor's warning that a cardinal set is not just a concept-extension [Tait on Frege]
     Full Idea: Cantor pointed out explicitly to Frege that it is a mistake to take the notion of a set (i.e. of that which has a cardinal number) to simply mean the extension of a concept. ...Frege's later assumption of this was an act of recklessness.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by William W. Tait - Frege versus Cantor and Dedekind III
     A reaction: ['recklessness' is on p.61] Tait has no sympathy with the image of Frege as an intellectual martyr. Frege had insufficient respect for a great genius. Cantor, crucially, understood infinity much better than Frege.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
My Basic Law V is a law of pure logic [Frege]
     Full Idea: I hold that my Basic Law V is a law of pure logic.
     From: Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893], p.4), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: This is, of course, the notorious law which fell foul of Russell's Paradox. It is said to be pure logic, even though it refers to things that are F and things that are G.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
For intuitionists it is constructed proofs (which take time) which make statements true [Dummett]
     Full Idea: For an intuitionist a mathematical statement is rendered true or false by a proof or disproof, that is, by a construction, and constructions are effected in time.
     From: Michael Dummett (Elements of Intuitionism [1977], p.336), quoted by Shaughan Lavine - Understanding the Infinite VI.2
     A reaction: Lavine is quoting this to draw attention to the difficulties of thinking of it as all taking place 'in time', especially when dealing with infinities.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
A concept is a function mapping objects onto truth-values, if they fall under the concept [Frege, by Dummett]
     Full Idea: In later Frege, a concept could be taken as a particular case of a function, mapping every object on to one of the truth-values (T or F), according as to whether, as we should ordinarily say, that object fell under the concept or not.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Michael Dummett - The Philosophy of Mathematics 3.5
     A reaction: As so often in these attempts at explanation, this sounds circular. You can't decide whether an object truly falls under a concept, if you haven't already got the concept. His troubles all arise (I say) because he scorns abstractionist accounts.
Frege took the study of concepts to be part of logic [Frege, by Shapiro]
     Full Idea: Frege took the study of concepts and their extensions to be within logic.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 1 (Basic Laws) [1893]) by Stewart Shapiro - Foundations without Foundationalism 7.1
     A reaction: This is part of the plan to make logic a universal language (see Idea 13664). I disagree with this, and with the general logicist view of the position of logic. The logical approach thins concepts out. See Deleuze/Guattari's horror at this.