Combining Texts

All the ideas for 'Logical Consequence', 'A Tour through Mathematical Logic' and 'Philosophy in the Tragic Age of the Greeks'

unexpand these ideas     |    start again     |     specify just one area for these texts


28 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'Equivocation' is when terms do not mean the same thing in premises and conclusion [Beall/Restall]
     Full Idea: 'Equivocation' is when the terms do not mean the same thing in the premises and in the conclusion.
     From: JC Beall / G Restall (Logical Consequence [2005], Intro)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
     Full Idea: 'For every number x, x = x' is not a tautology, because it includes no connectives.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.2)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
     Full Idea: Deduction Theorem: If T ∪ {P} |- Q, then T |- (P → Q). This is the formal justification of the method of conditional proof (CPP). Its converse holds, and is essentially modus ponens.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
     Full Idea: Universal Generalization: If we can prove P(x), only assuming what sort of object x is, we may conclude ∀xP(x) for the same x.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: This principle needs watching closely. If you pick one person in London, with no presuppositions, and it happens to be a woman, can you conclude that all the people in London are women? Fine in logic and mathematics, suspect in life.
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
     Full Idea: Universal Specification: from ∀xP(x) we may conclude P(t), where t is an appropriate term. If something is true for all members of a domain, then it is true for some particular one that we specify.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
     Full Idea: Existential Generalization (or 'proof by example'): From P(t), where t is an appropriate term, we may conclude ∃xP(x).
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: It is amazing how often this vacuous-sounding principles finds itself being employed in discussions of ontology, but I don't quite understand why.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
     Full Idea: Empty Set Axiom: ∃x ∀y ¬ (y ∈ x). There is a set x which has no members (no y's). The empty set exists. There is a set with no members, and by extensionality this set is unique.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.3)
     A reaction: A bit bewildering for novices. It says there is a box with nothing in it, or a pair of curly brackets with nothing between them. It seems to be the key idea in set theory, because it asserts the idea of a set over and above any possible members.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
     Full Idea: The comprehension axiom says that any collection of objects that can be clearly specified can be considered to be a set.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.2)
     A reaction: This is virtually tautological, since I presume that 'clearly specified' means pinning down exact which items are the members, which is what a set is (by extensionality). The naïve version is, of course, not so hot.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Formal logic is invariant under permutations, or devoid of content, or gives the norms for thought [Beall/Restall]
     Full Idea: Logic is purely formal either when it is invariant under permutation of object (Tarski), or when it has totally abstracted away from all contents, or it is the constitutive norms for thought.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: [compressed] The third account sounds rather woolly, and the second one sounds like a tricky operation, but the first one sounds clear and decisive, so I vote for Tarski.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
     Full Idea: One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
     Full Idea: The 'completeness' of first order-logic does not mean that every sentence or its negation is provable in first-order logic. We have instead the weaker result that every valid sentence is provable.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: Peter Smith calls the stronger version 'negation completeness'.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence needs either proofs, or absence of counterexamples [Beall/Restall]
     Full Idea: Technical work on logical consequence has either focused on proofs, where validity is the existence of a proof of the conclusions from the premises, or on models, which focus on the absence of counterexamples.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is either necessary truth preservation, or preservation based on interpretation [Beall/Restall]
     Full Idea: Two different views of logical consequence are necessary truth-preservation (based on modelling possible worlds; favoured by Realists), or truth-preservation based on the meanings of the logical vocabulary (differing in various models; for Anti-Realists).
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: Thus Dummett prefers the second view, because the law of excluded middle is optional. My instincts are with the first one.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
A step is a 'material consequence' if we need contents as well as form [Beall/Restall]
     Full Idea: A logical step is a 'material consequence' and not a formal one, if we need the contents as well as the structure or form.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A 'logical truth' (or 'tautology', or 'theorem') follows from empty premises [Beall/Restall]
     Full Idea: If a conclusion follows from an empty collection of premises, it is true by logic alone, and is a 'logical truth' (sometimes a 'tautology'), or, in the proof-centred approach, 'theorems'.
     From: JC Beall / G Restall (Logical Consequence [2005], 4)
     A reaction: These truths are written as following from the empty set Φ. They are just implications derived from the axioms and the rules.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
Models are mathematical structures which interpret the non-logical primitives [Beall/Restall]
     Full Idea: Models are abstract mathematical structures that provide possible interpretations for each of the non-logical primitives in a formal language.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
     Full Idea: An 'isomorphism' is a bijection between two sets that preserves all structural components. The interpretations of each constant symbol are mapped across, and functions map the relation and function symbols.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.4)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
     Full Idea: Deductive logic, including first-order logic and other types of logic used in mathematics, is 'monotonic'. This means that we never retract a theorem on the basis of new givens. If T|-φ and T⊆SW, then S|-φ. Ordinary reasoning is nonmonotonic.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.7)
     A reaction: The classic example of nonmonotonic reasoning is the induction that 'all birds can fly', which is retracted when the bird turns out to be a penguin. He says nonmonotonic logic is a rich field in computer science.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Hilbert proofs have simple rules and complex axioms, and natural deduction is the opposite [Beall/Restall]
     Full Idea: There are many proof-systems, the main being Hilbert proofs (with simple rules and complex axioms), or natural deduction systems (with few axioms and many rules, and the rules constitute the meaning of the connectives).
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
     Full Idea: One of the great achievements of modern mathematics has been the unification of its many types of objects. It began with showing geometric objects numerically or algebraically, and culminated with set theory representing all the normal objects.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: His use of the word 'object' begs all sorts of questions, if you are arriving from the street, where an object is something which can cause a bruise - but get used to it, because the word 'object' has been borrowed for new uses.
23. Ethics / F. Existentialism / 5. Existence-Essence
It is absurd to think you can change your own essence, like a garment [Nietzsche]
     Full Idea: Man is necessity down to his last fibre, and totally 'unfree', that is if one means by freedom the foolish demand to be able to change one's 'essentia' arbitrarily, like a garment.
     From: Friedrich Nietzsche (Philosophy in the Tragic Age of the Greeks [1873], p.7), quoted by Brian Leiter - Nietzsche On Morality 2 'Realism'
     A reaction: This is the big difference between the existentialism of Nietzsche and the more famous Sartrean approach, where the idea of being able to remake your essence is the most exciting and glamorous proposal. I'm with Nietzsche.