Combining Texts

All the ideas for 'Logical Pluralism', 'Darwinian Metaphysics: Species and Essentialism' and 'A Tour through Mathematical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


43 ideas

3. Truth / A. Truth Problems / 1. Truth
Some truths have true negations [Beall/Restall]
     Full Idea: Dialetheism is the view that some truths have true negations.
     From: JC Beall / G Restall (Logical Pluralism [2006], 7.4)
     A reaction: The important thing to remember is that they are truths. Thus 'Are you feeling happy?' might be answered 'Yes and no'.
3. Truth / B. Truthmakers / 5. What Makes Truths / b. Objects make truths
A truthmaker is an object which entails a sentence [Beall/Restall]
     Full Idea: The truthmaker thesis is that an object is a truthmaker for a sentence if and only if its existence entails the sentence.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.5.3)
     A reaction: The use of the word 'object' here is even odder than usual, and invites many questions. And the 'only if' seems peculiar, since all sorts of things can make a sentence true. 'There is someone in the house' for example.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
     Full Idea: 'For every number x, x = x' is not a tautology, because it includes no connectives.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.2)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
     Full Idea: Deduction Theorem: If T ∪ {P} |- Q, then T |- (P → Q). This is the formal justification of the method of conditional proof (CPP). Its converse holds, and is essentially modus ponens.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
     Full Idea: Universal Generalization: If we can prove P(x), only assuming what sort of object x is, we may conclude ∀xP(x) for the same x.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: This principle needs watching closely. If you pick one person in London, with no presuppositions, and it happens to be a woman, can you conclude that all the people in London are women? Fine in logic and mathematics, suspect in life.
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
     Full Idea: Universal Specification: from ∀xP(x) we may conclude P(t), where t is an appropriate term. If something is true for all members of a domain, then it is true for some particular one that we specify.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
     Full Idea: Existential Generalization (or 'proof by example'): From P(t), where t is an appropriate term, we may conclude ∃xP(x).
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: It is amazing how often this vacuous-sounding principles finds itself being employed in discussions of ontology, but I don't quite understand why.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
(∀x)(A v B) |- (∀x)A v (∃x)B) is valid in classical logic but invalid intuitionistically [Beall/Restall]
     Full Idea: The inference of 'distribution' (∀x)(A v B) |- (∀x)A v (∃x)B) is valid in classical logic but invalid intuitionistically. It is straightforward to construct a 'stage' at which the LHS is true but the RHS is not.
     From: JC Beall / G Restall (Logical Pluralism [2006], 6.1.2)
     A reaction: This seems to parallel the iterative notion in set theory, that you must construct your hierarchy. All part of the general 'constructivist' approach to things. Is some kind of mad platonism the only alternative?
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Excluded middle must be true for some situation, not for all situations [Beall/Restall]
     Full Idea: Relevant logic endorses excluded middle, ..but says instances of the law may fail. Bv¬B is true in every situation that settles the matter of B. It is necessary that there is some such situation.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.2)
     A reaction: See next idea for the unusual view of necessity on which this rests. It seems easier to assert something about all situations than just about 'some' situation.
It's 'relevantly' valid if all those situations make it true [Beall/Restall]
     Full Idea: The argument from P to A is 'relevantly' valid if and only if, for every situation in which each premise in P is true, so is A.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.2)
     A reaction: I like the idea that proper inference should have an element of relevance to it. A falsehood may allow all sorts of things, without actually implying them. 'Situations' sound promising here.
Relevant consequence says invalidity is the conclusion not being 'in' the premises [Beall/Restall]
     Full Idea: Relevant consequence says the conclusion of a relevantly invalid argument is not 'carried in' the premises - it does not follow from the premises.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.3.3)
     A reaction: I find this appealing. It need not invalidate classical logic. It is just a tougher criterion which is introduced when you want to do 'proper' reasoning, instead of just playing games with formal systems.
Relevant logic does not abandon classical logic [Beall/Restall]
     Full Idea: We have not abandoned classical logic in our acceptance of relevant logic.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.4)
     A reaction: It appears that classical logic is straightforwardly accepted, but there is a difference of opinion over when it is applicable.
A doesn't imply A - that would be circular [Beall/Restall]
     Full Idea: We could reject the inference from A to itself (on grounds of circularity).
     From: JC Beall / G Restall (Logical Pluralism [2006], 8)
     A reaction: [Martin-Meyer System] 'It's raining today'. 'Are you implying that it is raining today?' 'No, I'm SAYING it's raining today'. Logicians don't seem to understand the word 'implication'. Logic should capture how we reason. Nice proposal.
Relevant logic may reject transitivity [Beall/Restall]
     Full Idea: Some relevant logics reject transitivity, but we defend the classical view.
     From: JC Beall / G Restall (Logical Pluralism [2006], 8)
     A reaction: [they cite Neil Tennant for this view] To reject transitivity (A?B ? B?C ? A?C) certainly seems a long way from classical logic. But in everyday inference Tennant's idea seems good. The first premise may be irrelevant to the final conclusion.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic terms aren't existential; classical is non-empty, with referring names [Beall/Restall]
     Full Idea: A logic is 'free' to the degree it refrains from existential import of its singular and general terms. Classical logic must have non-empty domain, and each name must denote in the domain.
     From: JC Beall / G Restall (Logical Pluralism [2006], 7.1)
     A reaction: My intuition is that logic should have no ontology at all, so I like the sound of 'free' logic. We can't say 'Pegasus does not exist', and then reason about Pegasus just like any other horse.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
     Full Idea: Empty Set Axiom: ∃x ∀y ¬ (y ∈ x). There is a set x which has no members (no y's). The empty set exists. There is a set with no members, and by extensionality this set is unique.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.3)
     A reaction: A bit bewildering for novices. It says there is a box with nothing in it, or a pair of curly brackets with nothing between them. It seems to be the key idea in set theory, because it asserts the idea of a set over and above any possible members.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
     Full Idea: The comprehension axiom says that any collection of objects that can be clearly specified can be considered to be a set.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.2)
     A reaction: This is virtually tautological, since I presume that 'clearly specified' means pinning down exact which items are the members, which is what a set is (by extensionality). The naïve version is, of course, not so hot.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic studies consequence; logical truths are consequences of everything, or nothing [Beall/Restall]
     Full Idea: Nowadays we think of the consequence relation itself as the primary subject of logic, and view logical truths as degenerate instances of this relation. Logical truths follow from any set of assumptions, or from no assumptions at all.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.2)
     A reaction: This seems exactly right; the alternative is the study of necessities, but that may not involve logic.
Syllogisms are only logic when they use variables, and not concrete terms [Beall/Restall]
     Full Idea: According to the Peripatetics (Aristotelians), only syllogistic laws stated in variables belong to logic, and not their applications to concrete terms.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.5)
     A reaction: [from Lukasiewicz] Seems wrong. I take it there are logical relations between concrete things, and the variables are merely used to describe these relations. Variables lack the internal powers to drive logical necessities. Variables lack essence!
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The view of logic as knowing a body of truths looks out-of-date [Beall/Restall]
     Full Idea: Through much of the 20th century the conception of logic was inherited from Frege and Russell, as knowledge of a body of logical truths, as arithmetic or geometry was a knowledge of truths. This is odd, and a historical anomaly.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.2)
     A reaction: Interesting. I have always taken this idea to be false. I presume logic has minimal subject matter and truths, and preferably none at all.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Logic studies arguments, not formal languages; this involves interpretations [Beall/Restall]
     Full Idea: Logic does not study formal languages for their own sake, which is formal grammar. Logic evaluates arguments, and primarily considers formal languages as interpreted.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.1)
     A reaction: Hodges seems to think logic just studies formal languages. The current idea strikes me as a much more sensible view.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
     Full Idea: One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
     Full Idea: The 'completeness' of first order-logic does not mean that every sentence or its negation is provable in first-order logic. We have instead the weaker result that every valid sentence is provable.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: Peter Smith calls the stronger version 'negation completeness'.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
The model theory of classical predicate logic is mathematics [Beall/Restall]
     Full Idea: The model theory of classical predicate logic is mathematics if anything is.
     From: JC Beall / G Restall (Logical Pluralism [2006], 4.2.1)
     A reaction: This is an interesting contrast to the claim of logicism, that mathematics reduces to logic. This idea explains why students of logic are surprised to find themselves involved in mathematics.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
There are several different consequence relations [Beall/Restall]
     Full Idea: We are pluralists about logical consequence because we take there to be a number of different consequence relations, each reflecting different precisifications of the pre-theoretic notion of deductive logical consequence.
     From: JC Beall / G Restall (Logical Pluralism [2006], 8)
     A reaction: I don't see how you avoid the slippery slope that leads to daft logical rules like Prior's 'tonk' (from which you can infer anything you like). I say that nature imposes logical conquence on us - but don't ask me to prove it.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
A sentence follows from others if they always model it [Beall/Restall]
     Full Idea: The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence X.
     From: JC Beall / G Restall (Logical Pluralism [2006], 3.2)
     A reaction: This why the symbol |= is often referred to as 'models'.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truth is much more important if mathematics rests on it, as logicism claims [Beall/Restall]
     Full Idea: If mathematical truth reduces to logical truth then it is important what counts as logically true, …but if logicism is not a going concern, then the body of purely logical truths will be less interesting.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.2)
     A reaction: Logicism would only be one motivation for pursuing logical truths. Maybe my new 'Necessitism' will derive the Peano Axioms from broad necessary truths, rather than from logic.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
     Full Idea: An 'isomorphism' is a bijection between two sets that preserves all structural components. The interpretations of each constant symbol are mapped across, and functions map the relation and function symbols.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.4)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
     Full Idea: Deductive logic, including first-order logic and other types of logic used in mathematics, is 'monotonic'. This means that we never retract a theorem on the basis of new givens. If T|-φ and T⊆SW, then S|-φ. Ordinary reasoning is nonmonotonic.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.7)
     A reaction: The classic example of nonmonotonic reasoning is the induction that 'all birds can fly', which is retracted when the bird turns out to be a penguin. He says nonmonotonic logic is a rich field in computer science.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / d. The Preface paradox
Preface Paradox affirms and denies the conjunction of propositions in the book [Beall/Restall]
     Full Idea: The Paradox of the Preface is an apology, that you are committed to each proposition in the book, but admit that collectively they probably contain a mistake. There is a contradiction, of affirming and denying the conjunction of propositions.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.4)
     A reaction: This seems similar to the Lottery Paradox - its inverse perhaps. Affirm all and then deny one, or deny all and then affirm one?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
     Full Idea: One of the great achievements of modern mathematics has been the unification of its many types of objects. It began with showing geometric objects numerically or algebraically, and culminated with set theory representing all the normal objects.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: His use of the word 'object' begs all sorts of questions, if you are arriving from the street, where an object is something which can cause a bruise - but get used to it, because the word 'object' has been borrowed for new uses.
10. Modality / A. Necessity / 3. Types of Necessity
Relevant necessity is always true for some situation (not all situations) [Beall/Restall]
     Full Idea: In relevant logic, the necessary truths are not those which are true in every situation; rather, they are those for which it is necessary that there is a situation making them true.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.2)
     A reaction: This seems to rest on the truthmaker view of such things, which I find quite attractive (despite Merricks's assault). Always ask what is making some truth necessary. This leads you to essences.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
Judgement is always predicating a property of a subject [Beall/Restall]
     Full Idea: All judgement, for Kant, is essentially the predication of some property to some subject.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.5)
     A reaction: Presumably the denial of a predicate could be a judgement, or the affirmation of ambiguous predicates?
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
We can rest truth-conditions on situations, rather than on possible worlds [Beall/Restall]
     Full Idea: Situation semantics is a variation of the truth-conditional approach, taking the salient unit of analysis not to be the possible world, or some complete consistent index, but rather the more modest 'situation'.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.5.4)
     A reaction: When I read Davidson (and implicitly Frege) this is what I always assumed was meant. The idea that worlds are meant has crept in to give truth conditions for modal statements. Hence situation semantics must cover modality.
19. Language / D. Propositions / 1. Propositions
Propositions commit to content, and not to any way of spelling it out [Beall/Restall]
     Full Idea: Our talk of propositions expresses commitment to the general notion of content, without a commitment to any particular way of spelling this out.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.1)
     A reaction: As a fan of propositions I like this. It leaves open the question of whether the content belongs to the mind or the language. Animals entertain propositions, say I.
27. Natural Reality / G. Biology / 5. Species
Virtually all modern views of speciation rest on relational rather than intrinsic features [Okasha]
     Full Idea: On all modern species concepts (except the phenetic), the property in virtue of which a particular organism belongs to one species rather than another is a relational rather than an intrinsic property of the organism.
     From: Samir Okasha (Darwinian Metaphysics: Species and Essentialism [2002], p.201), quoted by Michael Devitt - Resurrecting Biological Essentialism 4
     A reaction: I am in sympathy with Devitt's attack on this view, for the same reason that I take relational explanations of almost anything (such as the mind) to be inadequate. We need to know the intrinsic features that enable the relations.