Combining Texts

All the ideas for 'Logical Consequence', '06: Romans' and 'Difficulties of Transfinite Numbers and Types'

unexpand these ideas     |    start again     |     specify just one area for these texts


11 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'Equivocation' is when terms do not mean the same thing in premises and conclusion [Beall/Restall]
     Full Idea: 'Equivocation' is when the terms do not mean the same thing in the premises and in the conclusion.
     From: JC Beall / G Restall (Logical Consequence [2005], Intro)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Formal logic is invariant under permutations, or devoid of content, or gives the norms for thought [Beall/Restall]
     Full Idea: Logic is purely formal either when it is invariant under permutation of object (Tarski), or when it has totally abstracted away from all contents, or it is the constitutive norms for thought.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: [compressed] The third account sounds rather woolly, and the second one sounds like a tricky operation, but the first one sounds clear and decisive, so I vote for Tarski.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence needs either proofs, or absence of counterexamples [Beall/Restall]
     Full Idea: Technical work on logical consequence has either focused on proofs, where validity is the existence of a proof of the conclusions from the premises, or on models, which focus on the absence of counterexamples.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is either necessary truth preservation, or preservation based on interpretation [Beall/Restall]
     Full Idea: Two different views of logical consequence are necessary truth-preservation (based on modelling possible worlds; favoured by Realists), or truth-preservation based on the meanings of the logical vocabulary (differing in various models; for Anti-Realists).
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: Thus Dummett prefers the second view, because the law of excluded middle is optional. My instincts are with the first one.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
A step is a 'material consequence' if we need contents as well as form [Beall/Restall]
     Full Idea: A logical step is a 'material consequence' and not a formal one, if we need the contents as well as the structure or form.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A 'logical truth' (or 'tautology', or 'theorem') follows from empty premises [Beall/Restall]
     Full Idea: If a conclusion follows from an empty collection of premises, it is true by logic alone, and is a 'logical truth' (sometimes a 'tautology'), or, in the proof-centred approach, 'theorems'.
     From: JC Beall / G Restall (Logical Consequence [2005], 4)
     A reaction: These truths are written as following from the empty set Φ. They are just implications derived from the axioms and the rules.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are mathematical structures which interpret the non-logical primitives [Beall/Restall]
     Full Idea: Models are abstract mathematical structures that provide possible interpretations for each of the non-logical primitives in a formal language.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Hilbert proofs have simple rules and complex axioms, and natural deduction is the opposite [Beall/Restall]
     Full Idea: There are many proof-systems, the main being Hilbert proofs (with simple rules and complex axioms), or natural deduction systems (with few axioms and many rules, and the rules constitute the meaning of the connectives).
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
'Predicative' norms are those which define a class [Russell]
     Full Idea: Norms (containing one variable) which do not define classes I propose to call 'non-predicative'; those which do define classes I shall call 'predicative'.
     From: Bertrand Russell (Difficulties of Transfinite Numbers and Types [1905], p.141)
We need rules for deciding which norms are predicative (unless none of them are) [Russell]
     Full Idea: We need rules for deciding what norms are predicative and what are not, unless we adopt the view (which has much to recommend it) that no norms are predicative. ...[146] A predative propositional function is one which determines a class.
     From: Bertrand Russell (Difficulties of Transfinite Numbers and Types [1905], p.141)
     A reaction: He is referring to his 'no class' theory, which he favoured at that time.
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
God's eternal power and deity are clearly seen in what has been created [Paul]
     Full Idea: From the creation of the world God's invisible nature, namely his eternal power and deity, are clearly perceived in the things that have been made.
     From: St Paul (06: Romans [c.55], 19-21), quoted by Brian Davies - Introduction to the Philosophy of Religion
     A reaction: St Paul says that for this reason the Gentiles are 'without excuse' for not believing (which means they are in trouble if Christians ever gain political power). Davies says it is unusual to find an argument for God's existence in the Bible.