Combining Texts

All the ideas for 'Causes and Counterfactuals', 'works' and 'Structuralism and the Notion of Dependence'

unexpand these ideas     |    start again     |     specify just one area for these texts


15 ideas

6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
     Full Idea: The 'deductivist' version of eliminativist structuralism avoids ontological commitments to mathematical objects, and to modal vocabulary. Mathematics is formulations of various (mostly categorical) theories to describe kinds of concrete structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], 1)
     A reaction: 'Concrete' is ambiguous here, as mathematicians use it for the actual working maths, as opposed to the metamathematics. Presumably the structures are postulated rather than described. He cites Russell 1903 and Putnam. It is nominalist.
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
     Full Idea: The 'non-eliminative' version of mathematical structuralism takes it to be a fundamental insight that mathematical objects are really just positions in abstract mathematical structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: The point here is that it is non-eliminativist because it is committed to the existence of mathematical structures. I oppose this view, since once you are committed to the structures, you may as well admit a vast implausible menagerie of abstracta.
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
     Full Idea: The 'modal' version of eliminativist structuralism lifts the deductivist ban on modal notions. It studies what necessarily holds in all concrete models which are possible for various theories.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: [He cites Putnam 1967, and Hellman 1989] If mathematical truths are held to be necessary (which seems to be right), then it seems reasonable to include modal notions, about what is possible, in its study.
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
     Full Idea: 'Set-theoretic' structuralism rejects deductive nominalism in favour of a background theory of sets, and mathematics as the various structures realized among the sets. This is often what mathematicians have in mind when they talk about structuralism.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: This is the big shift from 'mathematics can largely be described in set theory' to 'mathematics just is set theory'. If it just is set theory, then which version of set theory? Which axioms? The safe iterative conception, or something bolder?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
     Full Idea: Structuralism can be distinguished from traditional Platonism in that it denies that mathematical objects from the same structure are ontologically independent of one another
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: My instincts strongly cry out against all versions of this. If you are going to be a platonist (rather as if you are going to be religious) you might as well go for it big time and have independent objects, which will then dictate a structure.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
     Full Idea: Against extreme views that all mathematical objects depend on the structures to which they belong, or that none do, I defend a compromise view, that structuralists are right about algebraic objects (roughly), but anti-structuralists are right about sets.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], Intro)
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
     Full Idea: If objects depend on the other objects, this would mean an 'upward' dependence, in that they depend on the structure to which they belong, where the physical realm has a 'downward' dependence, with structures depending on their constituents.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: This nicely captures an intuition I have that there is something wrong with a commitment primarily to 'structures'. Our only conception of such things is as built up out of components. Not that I am committing to mathematical 'components'!
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
     Full Idea: We can give an exhaustive account of the identity of the empty set and its singleton without mentioning infinite sets, and it might be possible to defend the view that one natural number depends on its predecessor but not vice versa.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], V)
     A reaction: Linnebo uses this as one argument against mathematical structuralism, where the small seems to depend on the large. The view of sets rests on the iterative conception, where each level is derived from a lower level. He dismisses structuralism of sets.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
     Full Idea: There are two main ways of spelling out an 'intrinsic' property: if and only if it is shared by every duplicate of an object, ...and if and only if the object would have this property even if the rest of the universe were removed or disregarded.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], II)
     A reaction: [He cites B.Weatherson's Stanford Encyclopaedia article] How about an intrinsic property being one which explains its identity, or behaviour, or persistence conditions?
19. Language / F. Communication / 4. Private Language
Dewey argued long before Wittgenstein that there could not seriously be a private language [Dewey, by Orenstein]
     Full Idea: Dewey argued in the twenties that there could not be, in any serious sense, a private language. Wittgenstein also, years later, came to appreciate this point.
     From: report of John Dewey (works [1926]) by Alex Orenstein - W.V. Quine Ch.6
     A reaction: A nice historical footnote to perhaps the most famous argument in twentieth century philosophy. Can anyone send me the Dewey reference?
26. Natural Theory / C. Causation / 1. Causation
Causal statements are used to explain, to predict, to control, to attribute responsibility, and in theories [Kim]
     Full Idea: The function of causal statements is 1) to explain events, 2) for predictive usefulness, 3) to help control events, 4) with agents, to attribute moral responsibility, 5) in physical theory. We should judge causal theories by how they account for these.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.207)
     A reaction: He suggests that Lewis's counterfactual theory won't do well on this test. I think the first one is what matters. Philosophy aims to understand, and that is achieved through explanation. Regularity and counterfactual theories explain very little.
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
Many counterfactuals have nothing to do with causation [Kim, by Tooley]
     Full Idea: Kim has pointed out that there are a number of counterfactuals that have nothing to do with causation. If John marries Mary, then if John had not existed he would not have married Mary, but that is not the cause of their union.
     From: report of Jaegwon Kim (Causes and Counterfactuals [1973], 5.2) by Michael Tooley - Causation and Supervenience
     A reaction: One might not think that this mattered, but it leaves the problem of distinguishing between the causal counterfactuals and the rest (and you mustn't mention causation when you are doing it!).
Counterfactuals can express four other relations between events, apart from causation [Kim]
     Full Idea: Counterfactuals can express 'analytical' dependency, or the fact that one event is part of another, or an action done by doing another, or (most interestingly) an event can determine another without causally determining it.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.205)
     A reaction: [Kim gives example of each case] Counterfactuals can even express a relation that involves no dependency. Or they might just involve redescription, as in 'If Scott were still alive, then the author of "Waverley" would be too'.
Causation is not the only dependency relation expressed by counterfactuals [Kim]
     Full Idea: The sort of dependency expressed by counterfactual relations is considerably broader than strictly causal dependency, and causal dependency is only one among the heterogeneous group of dependency relationships counterfactuals can express.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.205)
     A reaction: In 'If pigs could fly, one and one still wouldn't make three' there isn't even a dependency. Kim has opened up lines of criticism which make the counterfactual analysis of causation look very implausible to me.
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Many counterfactual truths do not imply causation ('if yesterday wasn't Monday, it isn't Tuesday') [Kim, by Psillos]
     Full Idea: Kim gives a range of examples of counterfactual dependence without causation, as: 'if yesterday wasn't Monday, today wouldn't be Tuesday', and 'if my sister had not given birth, I would not be an uncle'.
     From: report of Jaegwon Kim (Causes and Counterfactuals [1973]) by Stathis Psillos - Causation and Explanation §3.3
     A reaction: This is aimed at David Lewis. The objection seems like commonsense. "If you blink, the cat gets it". Causal claims involve counterfactuals, but they are not definitive of what causation is.