Combining Texts

All the ideas for 'Causes and Counterfactuals', 'Reply to Professor Marcus' and 'Intensional Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


13 ideas

4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Either reference really matters, or we don't need to replace it with substitutions [Quine]
     Full Idea: When we reconstrue quantification in terms of substituted expressions rather than real values, we waive reference. ...but if reference matters, we cannot afford to waive it as a category; and if it does not, we do not need to.
     From: Willard Quine (Reply to Professor Marcus [1962], p.183)
     A reaction: An odd dilemma to pose. Presumably the substitution account is an attempt to explain how language actually works, without mentioning dubious direct ontological commitment in the quantifiers.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
26. Natural Theory / C. Causation / 1. Causation
Causal statements are used to explain, to predict, to control, to attribute responsibility, and in theories [Kim]
     Full Idea: The function of causal statements is 1) to explain events, 2) for predictive usefulness, 3) to help control events, 4) with agents, to attribute moral responsibility, 5) in physical theory. We should judge causal theories by how they account for these.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.207)
     A reaction: He suggests that Lewis's counterfactual theory won't do well on this test. I think the first one is what matters. Philosophy aims to understand, and that is achieved through explanation. Regularity and counterfactual theories explain very little.
26. Natural Theory / C. Causation / 9. General Causation / c. Counterfactual causation
Many counterfactuals have nothing to do with causation [Kim, by Tooley]
     Full Idea: Kim has pointed out that there are a number of counterfactuals that have nothing to do with causation. If John marries Mary, then if John had not existed he would not have married Mary, but that is not the cause of their union.
     From: report of Jaegwon Kim (Causes and Counterfactuals [1973], 5.2) by Michael Tooley - Causation and Supervenience
     A reaction: One might not think that this mattered, but it leaves the problem of distinguishing between the causal counterfactuals and the rest (and you mustn't mention causation when you are doing it!).
Counterfactuals can express four other relations between events, apart from causation [Kim]
     Full Idea: Counterfactuals can express 'analytical' dependency, or the fact that one event is part of another, or an action done by doing another, or (most interestingly) an event can determine another without causally determining it.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.205)
     A reaction: [Kim gives example of each case] Counterfactuals can even express a relation that involves no dependency. Or they might just involve redescription, as in 'If Scott were still alive, then the author of "Waverley" would be too'.
Causation is not the only dependency relation expressed by counterfactuals [Kim]
     Full Idea: The sort of dependency expressed by counterfactual relations is considerably broader than strictly causal dependency, and causal dependency is only one among the heterogeneous group of dependency relationships counterfactuals can express.
     From: Jaegwon Kim (Causes and Counterfactuals [1973], p.205)
     A reaction: In 'If pigs could fly, one and one still wouldn't make three' there isn't even a dependency. Kim has opened up lines of criticism which make the counterfactual analysis of causation look very implausible to me.
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Many counterfactual truths do not imply causation ('if yesterday wasn't Monday, it isn't Tuesday') [Kim, by Psillos]
     Full Idea: Kim gives a range of examples of counterfactual dependence without causation, as: 'if yesterday wasn't Monday, today wouldn't be Tuesday', and 'if my sister had not given birth, I would not be an uncle'.
     From: report of Jaegwon Kim (Causes and Counterfactuals [1973]) by Stathis Psillos - Causation and Explanation §3.3
     A reaction: This is aimed at David Lewis. The objection seems like commonsense. "If you blink, the cat gets it". Causal claims involve counterfactuals, but they are not definitive of what causation is.