Combining Texts

All the ideas for 'God and Human Attributes', 'Set Theory' and 'Rationality'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

2. Reason / A. Nature of Reason / 1. On Reason
You can be rational with undetected or minor inconsistencies [Harman]
     Full Idea: Rationality doesn't require consistency, because you can be rational despite undetected inconsistencies in beliefs, and it isn't always rational to respond to a discovery of inconsistency by dropping everything in favour of eliminating that inconsistency.
     From: Gilbert Harman (Rationality [1995], 1.2)
     A reaction: This strikes me as being correct, and is (I am beginning to realise) a vital contribution made to our understanding by pragmatism. European thinking has been too keen on logic as the model of good reasoning.
2. Reason / A. Nature of Reason / 6. Coherence
A coherent conceptual scheme contains best explanations of most of your beliefs [Harman]
     Full Idea: A set of unrelated beliefs seems less coherent than a tightly organized conceptual scheme that contains explanatory principles that make sense of most of your beliefs; this is why inference to the best explanation is an attractive pattern of inference.
     From: Gilbert Harman (Rationality [1995], 1.5.2)
     A reaction: I find this a very appealing proposal. The central aim of rational thought seems to me to be best explanation, and I increasingly think that most of my beliefs rest on their apparent coherence, rather than their foundations.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
14. Science / C. Induction / 1. Induction
Enumerative induction is inference to the best explanation [Harman]
     Full Idea: We might think of enumerative induction as inference to the best explanation, taking the generalization to explain its instances.
     From: Gilbert Harman (Rationality [1995], 1.5.2)
     A reaction: This is a helpful connection. The best explanation of these swans being white is that all swans are white; it ceased to be the best explanation when black swans turned up. In the ultimate case, a law of nature is the explanation.
14. Science / C. Induction / 3. Limits of Induction
Induction is 'defeasible', since additional information can invalidate it [Harman]
     Full Idea: It is sometimes said that inductive reasoning is 'defeasible', meaning that considerations that support a given conclusion can be defeated by additional information.
     From: Gilbert Harman (Rationality [1995], 1.4.5)
     A reaction: True. The point is that being defeasible does not prevent such thinking from being rational. The rational part of it is to acknowledge that your conclusion is defeasible.
14. Science / C. Induction / 4. Reason in Induction
All reasoning is inductive, and deduction only concerns implication [Harman]
     Full Idea: Deductive logic is concerned with deductive implication, not deductive reasoning; all reasoning is inductive
     From: Gilbert Harman (Rationality [1995], 1.4.5)
     A reaction: This may be an attempt to stipulate how the word 'reasoning' should be used in future. It is, though, a bold and interesting claim, given the reputation of induction (since Hume) of being a totally irrational process.
18. Thought / A. Modes of Thought / 5. Rationality / a. Rationality
Ordinary rationality is conservative, starting from where your beliefs currently are [Harman]
     Full Idea: Ordinary rationality is generally conservative, in the sense that you start from where you are, with your present beliefs and intentions.
     From: Gilbert Harman (Rationality [1995], 1.3)
     A reaction: This stands opposed to the Cartesian or philosophers' rationality, which requires that (where possible) everything be proved from scratch. Harman seems right, that the normal onus of proof is on changing beliefs, rather proving you should retain them.
28. God / B. Proving God / 2. Proofs of Reason / c. Moral Argument
God must be fit for worship, but worship abandons morally autonomy, but there is no God [Rachels, by Davies,B]
     Full Idea: Rachels argues 1) If any being is God, he must be a fitting object of worship, 2) No being could be a fitting object of worship, since worship requires the abandonment of one's role as an autonomous moral agent, so 3) There cannot be a being who is God.
     From: report of James Rachels (God and Human Attributes [1971], 7 p.334) by Brian Davies - Introduction to the Philosophy of Religion 9 'd morality'
     A reaction: Presumably Lionel Messi can be a fitting object of worship without being God. Since the problem is with being worshipful, rather than with being God, should I infer that Messi doesn't exist?