Combining Texts

All the ideas for 'Why coherence is not enough', 'Investigations in the Foundations of Set Theory I' and 'Replies on 'Limits of Abstraction''

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Concern for rigour can get in the way of understanding phenomena [Fine,K]
     Full Idea: It is often the case that the concern for rigor gets in the way of a true understanding of the phenomena to be explained.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
     A reaction: This is a counter to Timothy Williamson's love affair with rigour in philosophy. It strikes me as the big current question for analytical philosophy - of whether the intense pursuit of 'rigour' will actually deliver the wisdom we all seek.
2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
     Full Idea: On Zermelo's view, predicative definitions are not only indispensable to mathematics, but they are unobjectionable since they do not create the objects they define, but merely distinguish them from other objects.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Shaughan Lavine - Understanding the Infinite V.1
     A reaction: This seems to have an underlying platonism, that there are hitherto undefined 'objects' lying around awaiting the honour of being defined. Hm.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
     Full Idea: Starting from set theory as it is historically given ...we must, on the one hand, restrict these principles sufficiently to exclude as contradiction and, on the other, take them sufficiently wide to retain all that is valuable in this theory.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: Maddy calls this the one-step-back-from-disaster rule of thumb. Zermelo explicitly mentions the 'Russell antinomy' that blocked Frege's approach to sets.
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
     Full Idea: Set theory is that branch whose task is to investigate mathematically the fundamental notions 'number', 'order', and 'function', taking them in their pristine, simple form, and to develop thereby the logical foundations of all of arithmetic and analysis.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: At this point Zermelo seems to be a logicist. Right from the start set theory was meant to be foundational to mathematics, and not just a study of the logic of collections.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
     Full Idea: Zermelo-Fraenkel axioms: Existence (at least one set); Extension (same elements, same set); Specification (a condition creates a new set); Pairing (two sets make a set); Unions; Powers (all subsets make a set); Infinity (set of successors); Choice
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
     Full Idea: Zermelo proposed his listed of assumptions (including the controversial Axiom of Choice) in 1908, in order to secure his controversial proof of Cantor's claim that ' we can always bring any well-defined set into the form of a well-ordered set'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1
     A reaction: This is interesting because it sometimes looks as if axiom systems are just a way of tidying things up. Presumably it is essential to get people to accept the axioms in their own right, the 'old-fashioned' approach that they be self-evident.
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
     Full Idea: I intend to show how the entire theory created by Cantor and Dedekind can be reduced to a few definitions and seven principles, or axioms, which appear to be mutually independent.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: The number of axioms crept up to nine or ten in subsequent years. The point of axioms is maximum reduction and independence from one another. He says nothing about self-evidence (though Boolos claimed a degree of that).
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
     Full Idea: Zermelo's Pairing Axiom superseded (in 1930) his original 1908 Axiom of Elementary Sets. Like Union, its only justification seems to rest on 'limitations of size' and on the 'iterative conception'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Maddy says of this and Union, that they seem fairly obvious, but that their justification is of prime importance, if we are to understand what the axioms should be.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
     Full Idea: Zermelo used a weak form of the Axiom of Foundation to block Russell's paradox in 1906, but in 1908 felt that the form of his Separation Axiom was enough by itself, and left the earlier axiom off his published list.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.2
     A reaction: Foundation turns out to be fairly controversial. Barwise actually proposes Anti-Foundation as an axiom. Foundation seems to be the rock upon which the iterative view of sets is built. Foundation blocks infinite descending chains of sets, and circularity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
     Full Idea: The most characteristic Zermelo axiom is Separation, guided by a new rule of thumb: 'one step back from disaster' - principles of set generation should be as strong as possible short of contradiction.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.4
     A reaction: Why is there an underlying assumption that we must have as many sets as possible? We are then tempted to abolish axioms like Foundation, so that we can have even more sets!
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
     Full Idea: Zermelo assumes that not every predicate has an extension but rather that given a set we may separate out from it those of its members satisfying the predicate. This is called 'separation' (Aussonderung).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
There is no stage at which we can take all the sets to have been generated [Fine,K]
     Full Idea: There is no stage at which we can take all the sets to have been generated, since the set of all those sets which have been generated at a given stage will itself give us something new.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
We might combine the axioms of set theory with the axioms of mereology [Fine,K]
     Full Idea: We might combine the standard axioms of set theory with the standard axioms of mereology.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
If you ask what F the second-order quantifier quantifies over, you treat it as first-order [Fine,K]
     Full Idea: We are tempted to ask of second-order quantifiers 'what are you quantifying over?', or 'when you say "for some F" then what is the F?', but these questions already presuppose that the quantifiers are first-order.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005])
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Assigning an entity to each predicate in semantics is largely a technical convenience [Fine,K]
     Full Idea: In doing semantics we normally assign some appropriate entity to each predicate, but this is largely for technical convenience.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
     Full Idea: Because of Dedekind's definition of reals by cuts, there is a bizarre modern doctrine that there are many 1's - the natural number 1, the rational number 1, the real number 1, and even the complex number 1.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
     A reaction: See Idea 10572.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
     Full Idea: In Zermelo's set theory, the Burali-Forti Paradox becomes a proof that there is no set of all ordinals (so 'is an ordinal' has no extension).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
     Full Idea: By what right can Dedekind suppose that there is a number corresponding to any pair of irrationals that constitute an irrational cut?
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
     Full Idea: What is the union of the singleton {0}, of zero, and the singleton {φ}, of the null set? Is it the one-element set {0}, or the two-element set {0, φ}? Unless the question of identity between 0 and φ is resolved, we cannot say.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
     Full Idea: For Zermelo the successor of n is {n} (rather than Von Neumann's successor, which is n U {n}).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
     A reaction: I could ask some naive questions about the comparison of these two, but I am too shy about revealing my ignorance.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
     Full Idea: Zermelo was a reductionist, and believed that theorems purportedly about numbers (cardinal or ordinal) are really about sets, and since Von Neumann's definitions of ordinals and cardinals as sets, this has become common doctrine.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.8
     A reaction: Frege has a more sophisticated take on this approach. It may just be an updating of the Greek idea that arithmetic is about treating many things as a unit. A set bestows an identity on a group, and that is all that is needed.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
     Full Idea: Set-theoretic imperialists think that it must be possible to represent every mathematical object as a set.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
     Full Idea: In Zermelo's set-theoretic definition of number, 2 is a member of 3, but not a member of 4; in Von Neumann's definition every number is a member of every larger number. This means they have two different structures.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by James Robert Brown - Philosophy of Mathematics Ch. 4
     A reaction: This refers back to the dilemma highlighted by Benacerraf, which was supposed to be the motivation for structuralism. My intuition says that the best answer is that they are both wrong. In a pattern, the nodes aren't 'members' of one another.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
     Full Idea: Logicists traditionally claim that the theorems of mathematics can be derived by logical means from the relevant definitions of the terms, and that these theorems are epistemically innocent (knowable without Kantian intuition or empirical confirmation).
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / b. Levels of abstraction
A generative conception of abstracts proposes stages, based on concepts of previous objects [Fine,K]
     Full Idea: It is natural to have a generative conception of abstracts (like the iterative conception of sets). The abstracts are formed at stages, with the abstracts formed at any given stage being the abstracts of those concepts of objects formed at prior stages.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
     A reaction: See 10567 for Fine's later modification. This may not guarantee 'levels', but it implies some sort of conceptual priority between abstract entities.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / a. Agrippa's trilemma
There are five possible responses to the problem of infinite regress in justification [Cleve]
     Full Idea: Sceptics respond to the regress problem by denying knowledge; Foundationalists accept justifications without reasons; Positists say reasons terminate is mere posits; Coherentists say mutual support is justification; Infinitists accept the regress.
     From: James Van Cleve (Why coherence is not enough [2005], I)
     A reaction: A nice map of the territory. The doubts of Scepticism are not strong enough for anyone to embrace the view; Foundationalist destroy knowledge (?), as do Positists; Infinitism is a version of Coherentism - which is the winner.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / a. Foundationalism
Modern foundationalists say basic beliefs are fallible, and coherence is relevant [Cleve]
     Full Idea: Contemporary foundationalists are seldom of the strong Cartesian variety: they do not insist that basic beliefs be absolutely certain. They also tend to allow that coherence can enhance justification.
     From: James Van Cleve (Why coherence is not enough [2005], III)
     A reaction: It strikes me that they have got onto a slippery slope. How certain are the basic beliefs? How do you evaluate their certainty? Could incoherence in their implications undermine them? Skyscrapers need perfect foundations.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction-theoretic imperialists think Fregean abstracts can represent every mathematical object [Fine,K]
     Full Idea: Abstraction-theoretic imperialists think that it must be possible to represent every mathematical object as a Fregean abstract.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
We can combine ZF sets with abstracts as urelements [Fine,K]
     Full Idea: I propose a unified theory which is a version of ZF or ZFC with urelements, where the urelements are taken to be the abstracts.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
We can create objects from conditions, rather than from concepts [Fine,K]
     Full Idea: Instead of viewing the abstracts (or sums) as being generated from objects, via the concepts from which they are defined, we can take them to be generated from conditions. The number of the universe ∞ is the number of self-identical objects.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
     A reaction: The point is that no particular object is now required to make the abstraction.