Combining Texts

All the ideas for 'On the Philosophy of Logic', 'Intro to Gdel's Theorems' and 'The Work of a Free Person'

unexpand these ideas     |    start again     |     specify just one area for these texts


55 ideas

2. Reason / A. Nature of Reason / 1. On Reason
We reach 'reflective equilibrium' when intuitions and theory completely align [Fisher]
     Full Idea: A state of 'reflective equilibrium' is when our theory and our intuitions become completely aligned
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 12.IV)
     A reaction: [Rawls made this concept famous] This is a helpful concept in trying to spell out the ideal which is the dream of believers in 'pure reason' - that there is a goal in which everything comes right. The problem is when people have different intuitions!
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic says excluded middle and non-contradition are not tautologies [Fisher]
     Full Idea: In three-valued logic (L3), neither the law of excluded middle (p or not-p), nor the law of non-contradiction (not(p and not-p)) will be tautologies. If p has the value 'indeterminate' then so will not-p.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.I)
     A reaction: I quite accept that the world is full of indeterminate propositions, and that excluded middle and non-contradiction can sometimes be uncertain, but I am reluctant to accept that what is being offered here should be called 'logic'.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
Fuzzy logic has many truth values, ranging in fractions from 0 to 1 [Fisher]
     Full Idea: In fuzzy logic objects have properties to a greater or lesser degree, and truth values are given as fractions or decimals, ranging from 0 to 1. Not-p is defined as 1-p, and other formula are defined in terms of maxima and minima for sets.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.II)
     A reaction: The question seems to be whether this is actually logic, or a recasting of probability theory. Susan Haack attacks it. If logic is the study of how truth is preserved as we move between propositions, then 0 and 1 need a special status.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
There cannot be a set theory which is complete [Smith,P]
     Full Idea: By Gödel's First Incompleteness Theorem, there cannot be a negation-complete set theory.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.3)
     A reaction: This means that we can never prove all the truths of a system of set theory.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is: excluded middle, non-contradiction, contradictions imply all, disjunctive syllogism [Fisher]
     Full Idea: For simplicity, we can say that 'classical logic' amounts to the truth of four sentences: 1) either p or not-p; 2) it is not the case that both p and not-p; 3) from p and not-p, infer q; 4) from p or q and not-p, infer q.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 12.I)
     A reaction: [She says there are many ways of specifying classical logic] Intuition suggests that 2 and 4 are rather hard to dispute, while 1 is ignoring some grey areas, and 3 is totally ridiculous. There is, of course, plenty of support for 3!
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
     Full Idea: Going second-order in arithmetic enables us to prove new first-order arithmetical sentences that we couldn't prove before.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.4)
     A reaction: The wages of Satan, perhaps. We can prove things about objects by proving things about their properties and sets and functions. Smith says this fact goes all the way up the hierarchy.
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Logic formalizes how we should reason, but it shouldn't determine whether we are realists [Fisher]
     Full Idea: Even if one is inclined to be a realist about everything, it is hard to see why our logic should be the determiner. Logic is supposed to formalize how we ought to reason, but whether or not we should be realists is a matter of philosophy, not logic.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 09.I)
     A reaction: Nice to hear a logician saying this. I do not see why talk in terms of an object is a commitment to its existence. We can discuss the philosopher's stone, or Arthur's sword, or the Loch Ness monster, or gravitinos, with degrees of commitment.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
     Full Idea: The 'range' of a function is the set of elements in the output set that are values of the function for elements in the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: In other words, the range is the set of values that were created by the function.
Two functions are the same if they have the same extension [Smith,P]
     Full Idea: We count two functions as being the same if they have the same extension, i.e. if they pair up arguments with values in the same way.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 11.3)
     A reaction: So there's only one way to skin a cat in mathematical logic.
A 'partial function' maps only some elements to another set [Smith,P]
     Full Idea: A 'partial function' is one which maps only some elements of a domain to elements in another set. For example, the reciprocal function 1/x is not defined for x=0.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1 n1)
A 'total function' maps every element to one element in another set [Smith,P]
     Full Idea: A 'total function' is one which maps every element of a domain to exactly one corresponding value in another set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
     Full Idea: If a function f maps the argument a back to a itself, so that f(a) = a, then a is said to be a 'fixed point' for f.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 20.5)
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
     Full Idea: The so-called Comprehension Schema ∃X∀x(Xx ↔ φ(x)) says that there is a property which is had by just those things which satisfy the condition φ.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 22.3)
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
     Full Idea: 'Theorem': given a derivation of the sentence φ from the axioms of the theory T using the background logical proof system, we will say that φ is a 'theorem' of the theory. Standard abbreviation is T |- φ.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
     Full Idea: A 'natural deduction system' will have no logical axioms but may rules of inference.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 09.1)
     A reaction: He contrasts this with 'Hilbert-style systems', which have many axioms but few rules. Natural deduction uses many assumptions which are then discharged, and so tree-systems are good for representing it.
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
     Full Idea: No nice theory can define truth for its own language.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 21.5)
     A reaction: This leads on to Tarski's account of truth.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
     Full Idea: An 'injective' function is 'one-to-one' - each element of the output set results from a different element of the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: That is, two different original elements cannot lead to the same output element.
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
     Full Idea: A 'surjective' function is 'onto' - the whole of the output set results from the function being applied to elements of the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
     Full Idea: A 'bijective' function has 'one-to-one correspondence' - it is both surjective and injective, so that every element in each of the original and the output sets has a matching element in the other.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: Note that 'injective' is also one-to-one, but only in the one direction.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
     Full Idea: If everything that a theory proves must be true, then it is a 'sound' theory.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
Soundness is true axioms and a truth-preserving proof system [Smith,P]
     Full Idea: Soundness is normally a matter of having true axioms and a truth-preserving proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
     A reaction: The only exception I can think of is if a theory consisted of nothing but the axioms.
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
     Full Idea: A theory is 'sound' iff every theorem of it is true (i.e. true on the interpretation built into its language). Soundness is normally a matter of having true axioms and a truth-preserving proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
     Full Idea: A theory is 'negation complete' if it decides every sentence of its language (either the sentence, or its negation).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
'Complete' applies both to whole logics, and to theories within them [Smith,P]
     Full Idea: There is an annoying double-use of 'complete': a logic may be semantically complete, but there may be an incomplete theory expressed in it.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
     Full Idea: Logicians say that a theory T is '(negation) complete' if, for every sentence φ in the language of the theory, either φ or ¬φ is deducible in T's proof system. If this were the case, then truth could be equated with provability.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
     A reaction: The word 'negation' seems to be a recent addition to the concept. Presumable it might be the case that φ can always be proved, but not ¬φ.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
     Full Idea: There are two routes to Incompleteness results. One goes via the semantic assumption that we are dealing with sound theories, using a result about what they can express. The other uses the syntactic notion of consistency, with stronger notions of proof.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.1)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
     Full Idea: An 'effectively decidable' (or 'computable') algorithm will be step-by-small-step, with no need for intuition, or for independent sources, with no random methods, possible for a dumb computer, and terminates in finite steps.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.2)
     A reaction: [a compressed paragraph]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
     Full Idea: A theory is 'decidable' iff there is a mechanical procedure for determining whether any sentence of its language can be proved.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
     A reaction: Note that it doesn't actually have to be proved. The theorems of the theory are all effectively decidable.
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
     Full Idea: Any consistent, axiomatized, negation-complete formal theory is decidable.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.6)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
     Full Idea: A set is 'enumerable' iff either the set is empty, or there is a surjective function to the set from the set of natural numbers, so that the set is in the range of that function.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.3)
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
     Full Idea: A set is 'effectively enumerable' if an (idealised) computer could be programmed to generate a list of its members such that any member will eventually be mentioned (even if the list is empty, or without end, or contains repetitions).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
     Full Idea: A finite set of finitely specifiable objects is always effectively enumerable (for example, the prime numbers).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
     Full Idea: The set of ordered pairs of natural numbers (i,j) is effectively enumerable, as proven by listing them in an array (across: <0,0>, <0,1>, <0,2> ..., and down: <0,0>, <1,0>, <2,0>...), and then zig-zagging.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.5)
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
     Full Idea: The theorems of any properly axiomatized theory can be effectively enumerated. However, the truths of any sufficiently expressive arithmetic can't be effectively enumerated. Hence the theorems and truths of arithmetic cannot be the same.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 05 Intro)
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
     Full Idea: Whether a property is 'expressible' in a given theory depends on the richness of the theory's language. Whether the property can be 'captured' (or 'represented') by the theory depends on the richness of the axioms and proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 04.7)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
For primes we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))) [Smith,P]
     Full Idea: For prime numbers we write (x not= 1 ∧ ∀u∀v(u x v = x → (u = 1 ∨ v = 1))). That is, the only way to multiply two numbers and a get a prime is if one of them is 1.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 04.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The reals contain the naturals, but the theory of reals doesn't contain the theory of naturals [Smith,P]
     Full Idea: It has been proved (by Tarski) that the real numbers R is a complete theory. But this means that while the real numbers contain the natural numbers, the pure theory of real numbers doesn't contain the theory of natural numbers.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.2)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
The truths of arithmetic are just true equations and their universally quantified versions [Smith,P]
     Full Idea: The truths of arithmetic are just the true equations involving particular numbers, and universally quantified versions of such equations.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 27.7)
     A reaction: Must each equation be universally quantified? Why can't we just universally quantify over the whole system?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The number of Fs is the 'successor' of the Gs if there is a single F that isn't G [Smith,P]
     Full Idea: The number of Fs is the 'successor' of the number of Gs if there is an object which is an F, and the remaining things that are F but not identical to the object are equinumerous with the Gs.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 14.1)
All numbers are related to zero by the ancestral of the successor relation [Smith,P]
     Full Idea: All numbers are related to zero by the ancestral of the successor relation.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.5)
     A reaction: The successor relation only ties a number to the previous one, not to the whole series. Ancestrals are a higher level of abstraction.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / b. Baby arithmetic
Baby arithmetic covers addition and multiplication, but no general facts about numbers [Smith,P]
     Full Idea: Baby Arithmetic 'knows' the addition of particular numbers and multiplication, but can't express general facts about numbers, because it lacks quantification. It has a constant '0', a function 'S', and functions '+' and 'x', and identity and negation.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.1)
Baby Arithmetic is complete, but not very expressive [Smith,P]
     Full Idea: Baby Arithmetic is negation complete, so it can prove every claim (or its negation) that it can express, but it is expressively extremely impoverished.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.3)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / c. Robinson arithmetic
Robinson Arithmetic 'Q' has basic axioms, quantifiers and first-order logic [Smith,P]
     Full Idea: We can beef up Baby Arithmetic into Robinson Arithmetic (referred to as 'Q'), by restoring quantifiers and variables. It has seven generalised axioms, plus standard first-order logic.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.3)
Robinson Arithmetic (Q) is not negation complete [Smith,P]
     Full Idea: Robinson Arithmetic (Q) is not negation complete
     From: Peter Smith (Intro to Gödel's Theorems [2007], 08.4)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Natural numbers have zero, unique successors, unending, no circling back, and no strays [Smith,P]
     Full Idea: The sequence of natural numbers starts from zero, and each number has just one immediate successor; the sequence continues without end, never circling back on itself, and there are no 'stray' numbers, lurking outside the sequence.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
     A reaction: These are the characteristics of the natural numbers which have to be pinned down by any axiom system, such as Peano's, or any more modern axiomatic structures. We are in the territory of Gödel's theorems.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
The logic of arithmetic must quantify over properties of numbers to handle induction [Smith,P]
     Full Idea: If the logic of arithmetic doesn't have second-order quantifiers to range over properties of numbers, how can it handle induction?
     From: Peter Smith (Intro to Gödel's Theorems [2007], 10.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Multiplication only generates incompleteness if combined with addition and successor [Smith,P]
     Full Idea: Multiplication in itself isn't is intractable. In 1929 Skolem showed a complete theory for a first-order language with multiplication but lacking addition (or successor). Multiplication together with addition and successor produces incompleteness.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 10.7 n8)
Incompleteness results in arithmetic from combining addition and successor with multiplication [Smith,P]
     Full Idea: Putting multiplication together with addition and successor in the language of arithmetic produces incompleteness.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 10.7)
     A reaction: His 'Baby Arithmetic' has all three and is complete, but lacks quantification (p.51)
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
We could make our intuitions about heaps precise with a million-valued logic [Fisher]
     Full Idea: We could construct a 1,000,000-valued logic that would allow our intuitions concerning a heap to vary exactly with the amount of sand in the heap.
     From: Jennifer Fisher (On the Philosophy of Logic [2008])
     A reaction: Presumably only an infinite number of grains of sand would then produce a true heap, and even one grain would count as a bit of a heap, which must both be wrong, so I can't see this helping much.
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
The 'ancestral' of a relation is a new relation which creates a long chain of the original relation [Smith,P]
     Full Idea: The 'ancestral' of a relation is that relation which holds when there is an indefinitely long chain of things having the initial relation.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.5)
     A reaction: The standard example is spotting the relation 'ancestor' from the receding relation 'parent'. This is a sort of abstraction derived from a relation which is not equivalent (parenthood being transitive but not reflexive). The idea originated with Frege.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vagueness can involve components (like baldness), or not (like boredom) [Fisher]
     Full Idea: Vague terms come in at least two different kinds: those whose constituent parts come in discrete packets (bald, rich, red) and those that don't (beauty, boredom, niceness).
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.II)
     A reaction: The first group seem to be features of the external world, and the second all occur in the mind. Baldness may be vague, but presumably hairs are (on the whole) not. Nature doesn't care whether someone is actually 'bald' or not.
10. Modality / B. Possibility / 1. Possibility
We can't explain 'possibility' in terms of 'possible' worlds [Fisher]
     Full Idea: Explaining 'it is possible that p' by saying p is true in at least one possible world doesn't get me very far. If I don't understand what possibility is, then appealing to possible worlds is not going to do me much good.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 06.III)
     A reaction: This seems so blatant that I assume friends of possible worlds will have addressed the problem. Note that you will also need to understand 'possible' to define necessity as 'true in all possible worlds'. Necessarily-p is not-possibly-not-p.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
If all truths are implied by a falsehood, then not-p might imply both q and not-q [Fisher]
     Full Idea: If all truths are implied by a falsehood, then 'if there are no trees in the park then there is no shade' and 'if there are no trees in the park there is plenty of shade' both come out as true. Intuitively, though, the second one is false.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 08.I)
     A reaction: The rule that a falsehood implies all truths must be the weakest idea in classical logic, if it actually implies a contradiction. This means we must take an interest in relevance logics.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
In relevance logic, conditionals help information to flow from antecedent to consequent [Fisher]
     Full Idea: A good account of relevance logic suggests that a conditional will be true when the flow of information is such that a conditional is the device that helps information to flow from the antecedent to the consequent.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 08.III)
     A reaction: Hm. 'If you are going out, you'll need an umbrella'. This passes on information about 'out', but also brings in new information. 'If you are going out, I'm leaving you'. What flows is an interpretation of the antecedent. Tricky.
24. Political Theory / D. Ideologies / 11. Capitalism
Once money is the main aim, society needs everyone to think wealth is possible [Weil]
     Full Idea: Money, once it becomes the goal of desires and efforts, cannot tolerate in its domain internal conditions in which it is impossible to be enriched.
     From: Simone Weil (The Work of a Free Person [1942], p.134)
     A reaction: The possibility for everyone that they might become rich seems basic to capitalism, even though it is utterly impossible. In theory we can all set up small successful businesses, but if they are good they nearly all get squeezed out.