Combining Texts

All the ideas for 'The Middle Works (15 vols, ed Boydston)', 'Justified Belief as Responsible Belief' and 'Beginning Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


62 ideas

2. Reason / A. Nature of Reason / 6. Coherence
Coherentists seek relations among beliefs that are simple, conservative and explanatory [Foley]
     Full Idea: Coherentists try to provide an explication of epistemic rationality in terms of a set of deductive and probabilistic relations among beliefs and properties such as simplicity, conservativeness, and explanatory power.
     From: Richard Foley (Justified Belief as Responsible Belief [2005], p.317)
     A reaction: I have always like the coherentist view of justification, and now I see that this has led me to the question of explanation, which in turn has led me to essentialism. It's all coming together. Watch this space. 'Explanatory' is the key to everything!
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
     Full Idea: Two propositions are 'contradictory' if they are never both true and never both false either, which means that ¬(A↔B) is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
     Full Idea: We write 'if P then Q' as P→Q. This is called a 'conditional', with P as its 'antecedent', and Q as its 'consequent'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: P→Q can also be written as ¬P∨Q.
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that either P or Q is called the 'disjunction' of P and Q, and is written P∨Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: This is inclusive-or (meaning 'P, or Q, or both'), and not exlusive-or (Boolean XOR), which means 'P, or Q, but not both'. The ∨ sign is sometimes called 'vel' (Latin).
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that both P and Q is called the 'conjunction' of P and Q, and is written P∧Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: [I use the more fashionable inverted-v '∧', rather than Lemmon's '&', which no longer seems to be used] P∧Q can also be defined as ¬(¬P∨¬Q)
The sign |- may be read as 'therefore' [Lemmon]
     Full Idea: I introduce the sign |- to mean 'we may validly conclude'. To call it the 'assertion sign' is misleading. It may conveniently be read as 'therefore'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: [Actually no gap between the vertical and horizontal strokes of the sign] As well as meaning 'assertion', it may also mean 'it is a theorem that' (with no proof shown).
We write the 'negation' of P (not-P) as ¬ [Lemmon]
     Full Idea: We write 'not-P' as ¬P. This is called the 'negation' of P. The 'double negation' of P (not not-P) would be written as ¬¬P.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: Lemmons use of -P is no longer in use for 'not'. A tilde sign (squiggle) is also used for 'not', but some interpreters give that a subtly different meaning (involving vagueness). The sign ¬ is sometimes called 'hook' or 'corner'.
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
     Full Idea: We write 'P if and only if Q' as P↔Q. It is called the 'biconditional', often abbreviate in writing as 'iff'. It also says that P is both sufficient and necessary for Q, and may be written out in full as (P→Q)∧(Q→P).
     From: E.J. Lemmon (Beginning Logic [1965], 1.4)
     A reaction: If this symbol is found in a sequence, the first move in a proof is to expand it to the full version.
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
     Full Idea: If we say that A and B are 'interderivable' from one another (that is, A |- B and B |- A), then we may write A -||- B.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
     Full Idea: A 'well-formed formula' of the propositional calculus is a sequence of symbols which follows the rules for variables, ¬, →, ∧, ∨, and ↔.
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
     Full Idea: The 'scope' of a connective in a certain formula is the formulae linked by the connective, together with the connective itself and the (theoretically) encircling brackets
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
     Full Idea: A 'substitution-instance' is a wff which results by replacing one or more variables throughout with the same wffs (the same wff replacing each variable).
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value F for all possible assignments of truth-values to its variables, it is said to be 'inconsistent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'contrary' if they are never both true, which may be tested by the truth-table for ¬(A∧B), which is a tautology if they are contrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
     Full Idea: Two propositions are 'equivalent' if whenever A is true B is true, and whenever B is true A is true, in which case A↔B is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes at least one T and at least one F for all the assignments of truth-values to its variables, it is said to be 'contingent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'subcontrary' if they are never both false, which may be tested by the truth-table for A∨B, which is a tautology if they are subcontrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
     Full Idea: One proposition A 'implies' a proposition B if whenever A is true B is true (but not necessarily conversely), which is only the case if A→B is tautologous. Hence B 'is implied' by A.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value T for all possible assignments of truth-values to its variables, it is said to be a 'tautology'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
     Full Idea: A 'theorem' of logic is the conclusion of a provable sequent in which the number of assumptions is zero.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is what Quine and others call a 'logical truth'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
∧I: Given A and B, we may derive A∧B [Lemmon]
     Full Idea: And-Introduction (&I): Given A and B, we may derive A∧B as conclusion. This depends on their previous assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
     Full Idea: Conditional Proof (CP): Given a proof of B from A as assumption, we may derive A→B as conclusion, on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MPP: Given A and A→B, we may derive B [Lemmon]
     Full Idea: Modus Ponendo Ponens (MPP): Given A and A→B, we may derive B as a conclusion. B will rest on any assumptions that have been made.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
     Full Idea: Or-Elimination (∨E): Given A∨B, we may derive C if it is proved from A as assumption and from B as assumption. This will also depend on prior assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
DN: Given A, we may derive ¬¬A [Lemmon]
     Full Idea: Double Negation (DN): Given A, we may derive ¬¬A as a conclusion, and vice versa. The conclusion depends on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
A: we may assume any proposition at any stage [Lemmon]
     Full Idea: Assumptions (A): any proposition may be introduced at any stage of a proof.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
     Full Idea: And-Elimination (∧E): Given A∧B, we may derive either A or B separately. The conclusions will depend on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
     Full Idea: Reduction ad Absurdum (RAA): Given a proof of B∧¬B from A as assumption, we may derive ¬A as conclusion, depending on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
     Full Idea: Modus Tollendo Tollens (MTT): Given ¬B and A→B, we derive ¬A as a conclusion. ¬A depends on any assumptions that have been made
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
     Full Idea: Or-Introduction (∨I): Given either A or B separately, we may derive A∨B as conclusion. This depends on the assumption of the premisses.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
     Full Idea: 'Modus tollendo ponens' (MTP) says that if a disjunction holds and also the negation of one of its disjuncts, then the other disjunct holds. Thus ¬P, P ∨ Q |- Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
     Full Idea: 'Modus ponendo tollens' (MPT) says that if the negation of a conjunction holds and also one of its conjuncts, then the negation of the other conjunct holds. Thus P, ¬(P ∧ Q) |- ¬Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
     Full Idea: The proof that P→Q -||- ¬(P ∧ ¬Q) is useful for enabling us to change conditionals into negated conjunctions
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
     Full Idea: The proof that P→Q -||- ¬P ∨ Q is useful for enabling us to change conditionals into disjunctions.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
     Full Idea: The forms of De Morgan's Laws [P∨Q -||- ¬(¬P ∧ ¬Q); ¬(P∨Q) -||- ¬P ∧ ¬Q; ¬(P∧Q) -||- ¬P ∨ ¬Q); P∧Q -||- ¬(¬P∨¬Q)] transform negated conjunctions and disjunctions into non-negated disjunctions and conjunctions respectively.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
     Full Idea: The Distributive Laws say that P ∧ (Q∨R) -||- (P∧Q) ∨ (P∧R), and that P ∨ (Q∨R) -||- (P∨Q) ∧ (P∨R)
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
     Full Idea: The proof that P∧Q -||- ¬(P → ¬Q) is useful for enabling us to change conjunctions into negated conditionals.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
     Full Idea: The truth-table approach enables us to show the invalidity of argument-patterns, as well as their validity.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
     Full Idea: A truth-table test is entirely mechanical, ..and in propositional logic we can even generate proofs mechanically for tautological sequences, ..but this mechanical approach breaks down with predicate calculus, and proof-discovery is an imaginative process.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
     Full Idea: If any application of the nine derivation rules of propositional logic is made on tautologous sequents, we have demonstrated that the result is always a tautologous sequent. Thus the system is consistent.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
     A reaction: The term 'sound' tends to be used now, rather than 'consistent'. See Lemmon for the proofs of each of the nine rules.
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
     Full Idea: A logical system is complete is all expressions of a specified kind are derivable in it. If we specify tautologous sequent-expressions, then propositional logic is complete, because we can show that all tautologous sequents are derivable.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
     A reaction: [See Lemmon 2.5 for details of the proofs]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
     Full Idea: Just as '(∀x)(...)' is to mean 'take any x: then....', so we write '(∃x)(...)' to mean 'there is an x such that....'
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: [Actually Lemmon gives the universal quantifier symbol as '(x)', but the inverted A ('∀') seems to have replaced it these days]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
     Full Idea: A predicate letter followed by one name expresses a property ('Gm'), and a predicate-letter followed by two names expresses a relation ('Pmn'). We could write 'Pmno' for a complex relation like betweenness.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
     Full Idea: I define a 'symbol' (of the predicate calculus) as either a bracket or a logical connective or a term or an individual variable or a predicate-letter or reverse-E (∃).
     From: E.J. Lemmon (Beginning Logic [1965], 4.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
     Full Idea: Quantifier-notation might be thus: first, render into sentences about 'properties', and use 'predicate-letters' for them; second, introduce 'variables'; third, introduce propositional logic 'connectives' and 'quantifiers'. Plus letters for 'proper names'.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
     Full Idea: Our rule of universal quantifier elimination (UE) lets us infer that any particular object has F from the premiss that all things have F. It is a natural extension of &E (and-elimination), as universal propositions generally affirm a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
     Full Idea: If there are just three objects and each has F, then by an extension of &I we are sure everything has F. This is of no avail, however, if our universe is infinitely large or if not all objects have names. We need a new device, Universal Introduction, UI.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
     Full Idea: Univ Elim UE - if everything is F, then something is F; Univ Intro UI - if an arbitrary thing is F, everything is F; Exist Intro EI - if an arbitrary thing is F, something is F; Exist Elim EE - if a proof needed an object, there is one.
     From: E.J. Lemmon (Beginning Logic [1965], 3.3)
     A reaction: [My summary of Lemmon's four main rules for predicate calculus] This is the natural deduction approach, of trying to present the logic entirely in terms of introduction and elimination rules. See Bostock on that.
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
     Full Idea: In predicate calculus we take over the propositional connectives and propositional variables - but we need additional rules for handling quantifiers: four rules, an introduction and elimination rule for the universal and existential quantifiers.
     From: E.J. Lemmon (Beginning Logic [1965])
     A reaction: This is Lemmon's natural deduction approach (invented by Gentzen), which is largely built on introduction and elimination rules.
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
     Full Idea: The elimination rule for the universal quantifier concerns the use of a universal proposition as a premiss to establish some conclusion, whilst the introduction rule concerns what is required by way of a premiss for a universal proposition as conclusion.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
     A reaction: So if you start with the universal, you need to eliminate it, and if you start without it you need to introduce it.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
     Full Idea: If all objects in a given universe had names which we knew and there were only finitely many of them, then we could always replace a universal proposition about that universe by a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
     Full Idea: It is a common mistake to render 'some Frenchmen are generous' by (∃x)(Fx→Gx) rather than the correct (∃x)(Fx&Gx). 'All Frenchmen are generous' is properly rendered by a conditional, and true if there are no Frenchmen.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: The existential quantifier implies the existence of an x, but the universal quantifier does not.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
     Full Idea: The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q. That is, since Napoleon was French, then if the moon is blue then Napoleon was French; and since Napoleon was not Chinese, then if Napoleon was Chinese, the moon is blue.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is why the symbol → does not really mean the 'if...then' of ordinary English. Russell named it 'material implication' to show that it was a distinctively logical operator.
11. Knowledge Aims / A. Knowledge / 3. Value of Knowledge
The value and truth of knowledge are measured by success in activity [Dewey]
     Full Idea: What measures knowledge's value, its correctness and truth, is the degree of its availability for conducting to a successful issue the activities of living beings.
     From: John Dewey (The Middle Works (15 vols, ed Boydston) [1910], 4:180), quoted by David Hildebrand - Dewey 2 'Critique'
     A reaction: Note that this is the measure of truth, not the nature of truth (which James seemed to believe). Dewey gives us a clear and perfect statement of the pragmatic view of knowledge. I don't agree with it.
13. Knowledge Criteria / A. Justification Problems / 3. Internal or External / c. Disjunctivism
Externalists want to understand knowledge, Internalists want to understand justification [Foley]
     Full Idea: Externalists are principally interested in understanding what knowledge is, ..while internalists, by contrast, are principally interested in explicating a sense of justification ..from one's own perspective.
     From: Richard Foley (Justified Belief as Responsible Belief [2005], p.314)
     A reaction: I find this very helpful, since I have a strong bias towards internalism (with a social dimension), and I see now that it is because I am more interested in what a (good) justification is than what some entity in reality called 'knowledge' consists of.
13. Knowledge Criteria / B. Internal Justification / 2. Pragmatic justification
We aren't directly pragmatic about belief, but pragmatic about the deliberation which precedes it [Foley]
     Full Idea: It is rare for pragmatic considerations to influence the rationality of our beliefs in the crass, direct way that Pascal's Wager envisions. Instead, they determine the direction and shape of our investigative and deliberative projects and practices.
     From: Richard Foley (Justified Belief as Responsible Belief [2005], p.320)
     A reaction: [See Idea 6684 for Pascal's Wager] Foley is evidently a full-blown pragmatist (which is bad), but this is nicely put. We can't deny the importance of the amount of effort put into an enquiry. Maybe it is an epistemic duty, rather than a means to an end.
Justification comes from acceptable procedures, given practical constraints [Foley]
     Full Idea: One justifiably believes a proposition if one has an epistemically rational belief that one's procedures with respect to it have been acceptable, given practical limitations, and one's goals.
     From: Richard Foley (Justified Belief as Responsible Belief [2005], p.322)
     A reaction: I quite like this, except that it is too individualistic. My goals, and my standards of acceptability decree whether I know? I don't see the relevance of goals; only a pragmatist would mention such a thing. Standards of acceptability are social.
16. Persons / B. Nature of the Self / 1. Self and Consciousness
Habits constitute the self [Dewey]
     Full Idea: All habits are demands for certain kinds of activity; and they constitute the self.
     From: John Dewey (The Middle Works (15 vols, ed Boydston) [1910], 14:22), quoted by David Hildebrand - Dewey 1 'Acts'
     A reaction: Not an idea I have encountered elsewhere. He emphasises that habits are not repeated actions, but are dispositions. I'm not clear whether these habits must be conscious.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / e. Character
The good people are those who improve; the bad are those who deteriorate [Dewey]
     Full Idea: The bad man is the man who no matter how good he has been is beginning to deteriorate, to grow less good. The good man is the man who no matter how morally unworthy he has been is moving to become better.
     From: John Dewey (The Middle Works (15 vols, ed Boydston) [1910], 12:181), quoted by David Hildebrand - Dewey 3 'Reconstruct'
     A reaction: Although a slightly improving rat doesn't sound as good as a slightly deteriorating saint, I have some sympathy with this thought. The desire to improve seems to be right at the heart of what makes good character.
24. Political Theory / D. Ideologies / 5. Democracy / a. Nature of democracy
Democracy is the development of human nature when it shares in the running of communal activities [Dewey]
     Full Idea: Democracy is but a name for the fact that human nature is developed only when its elements take part in directing things which are common, things for the sake of which men and women form groups.
     From: John Dewey (The Middle Works (15 vols, ed Boydston) [1910], 12:199), quoted by David Hildebrand - Dewey 4 'Democracy'
     A reaction: It is hard to prove that human nature develops when it particpates in groups. If people are excluded from power, their loyalty tends to switch to sub-groups, such as friends in a pub, or a football team. Powerless nationalists baffle me.
Democracy is not just a form of government; it is a mode of shared living [Dewey]
     Full Idea: A democracy is more than a form of government; it is primarily a mode of associated living, of conjoint communicated experience
     From: John Dewey (The Middle Works (15 vols, ed Boydston) [1910], 9:93), quoted by David Hildebrand - Dewey 4 'Democracy'
     A reaction: This precisely pinpoints the heart of the culture wars in 2021. A huge swathe of western populations believe in Dewey's idea, but a core of wealthy right-wingers and their servants only see democracy as the mechanism for obtaining power.
24. Political Theory / D. Ideologies / 6. Liberalism / b. Liberal individualism
Individuality is only developed within groups [Dewey]
     Full Idea: Only in social groups does a person have a chance to develop individuality.
     From: John Dewey (The Middle Works (15 vols, ed Boydston) [1910], 15:176), quoted by David Hildebrand - Dewey 4 'Individuals'
     A reaction: This is a criticism of both Rawls and Nozick. Rawls's initial choosers don't consult, or have much social background. Nozick's property owners ignore everything except contracts.