Combining Texts

All the ideas for 'The Case for Closure', 'How to Define Theoretical Terms' and 'Model Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


18 ideas

2. Reason / D. Definition / 2. Aims of Definition
Defining terms either enables elimination, or shows that they don't require elimination [Lewis]
     Full Idea: To define theoretical terms might be to show how to do without them, but it is better to say that it shows there is no good reason to want to do without them.
     From: David Lewis (How to Define Theoretical Terms [1970], Intro)
2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
     Full Idea: Late nineteenth century mathematicians said that, although plus, minus and 0 could not be precisely defined, they could be partially 'implicitly defined' as a group. This nonsense was rejected by Frege and others, as expressed in Russell 1903.
     From: Wilfrid Hodges (Model Theory [2005], 2)
     A reaction: [compressed] This is helpful in understanding what is going on in Frege's 'Grundlagen'. I won't challenge Hodges's claim that such definitions are nonsense, but there is a case for understanding groups of concepts together.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
     Full Idea: In first-order languages the completeness theorem tells us that T |= φ holds if and only if there is a proof of φ from T (T |- φ). Since the two symbols express the same relationship, theorist often just use |- (but only for first-order!).
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: [actually no spaces in the symbols] If you are going to study this kind of theory of logic, the first thing you need to do is sort out these symbols, which isn't easy!
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
     Full Idea: If every structure which is a model of a set of sentences T is also a model of one of its sentences φ, then this is known as the model-theoretic consequence relation, and is written T |= φ. Not to be confused with |= meaning 'satisfies'.
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: See also Idea 10474, which gives the other meaning of |=, as 'satisfies'. The symbol is ALSO used in propositional logical, to mean 'tautologically implies'! Sort your act out, logicians.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
     Full Idea: The symbol in 'I |= S' reads that if the interpretation I (about word meaning) happens to make the sentence S state something true, then I 'is a model for' S, or I 'satisfies' S.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: Unfortunately this is not the only reading of the symbol |= [no space between | and =!], so care and familiarity are needed, but this is how to read it when dealing with models. See also Idea 10477.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
     Full Idea: Model theory is the study of the interpretation of any language, formal or natural, by means of set-theoretic structures, with Tarski's truth definition as a paradigm.
     From: Wilfrid Hodges (Model Theory [2005], Intro)
     A reaction: My attention is caught by the fact that natural languages are included. Might we say that science is model theory for English? That sounds like Quine's persistent message.
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
     Full Idea: A 'structure' in model theory is an interpretation which explains what objects some expressions refer to, and what classes some quantifiers range over.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: He cites as examples 'first-order structures' used in mathematical model theory, and 'Kripke structures' used in model theory for modal logic. A structure is also called a 'universe'.
Models in model theory are structures, not sets of descriptions [Hodges,W]
     Full Idea: The models in model-theory are structures, but there is also a common use of 'model' to mean a formal theory which describes and explains a phenomenon, or plans to build it.
     From: Wilfrid Hodges (Model Theory [2005], 5)
     A reaction: Hodges is not at all clear here, but the idea seems to be that model-theory offers a set of objects and rules, where the common usage offers a set of descriptions. Model-theory needs homomorphisms to connect models to things,
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
     Full Idea: First-order logic is hopeless for discriminating between one infinite cardinal and another.
     From: Wilfrid Hodges (Model Theory [2005], 4)
     A reaction: This seems rather significant, since mathematics largely relies on first-order logic for its metatheory. Personally I'm tempted to Ockham's Razor out all these super-infinities, but mathematicians seem to make use of them.
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
A logically determinate name names the same thing in every possible world [Lewis]
     Full Idea: A logically determinate name is one which names the same thing in every possible world.
     From: David Lewis (How to Define Theoretical Terms [1970], III)
     A reaction: This appears to be rigid designation, before Kripke introduced the new word.
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
Commitment to 'I have a hand' only makes sense in a context where it has been doubted [Hawthorne]
     Full Idea: If I utter 'I know I have a hand' then I can only be reckoned a cooperative conversant by my interlocutors on the assumption that there was a real question as to whether I have a hand.
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: This seems to point to the contextualist approach to global scepticism, which concerns whether we are setting the bar high or low for 'knowledge'.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / c. Knowledge closure
How can we know the heavyweight implications of normal knowledge? Must we distort 'knowledge'? [Hawthorne]
     Full Idea: Those who deny skepticism but accept closure will have to explain how we know the various 'heavyweight' skeptical hypotheses to be false. Do we then twist the concept of knowledge to fit the twin desiderata of closue and anti-skepticism?
     From: John Hawthorne (The Case for Closure [2005], Intro)
     A reaction: [He is giving Dretske's view; Dretske says we do twist knowledge] Thus if I remember yesterday, that has the heavyweight implication that the past is real. Hawthorne nicely summarises why closure produces a philosophical problem.
We wouldn't know the logical implications of our knowledge if small risks added up to big risks [Hawthorne]
     Full Idea: Maybe one cannot know the logical consequences of the proposition that one knows, on account of the fact that small risks add up to big risks.
     From: John Hawthorne (The Case for Closure [2005], 1)
     A reaction: The idea of closure is that the new knowledge has the certainty of logic, and each step is accepted. An array of receding propositions can lose reliability, but that shouldn't apply to logic implications. Assuming monotonic logic, of course.
Denying closure is denying we know P when we know P and Q, which is absurd in simple cases [Hawthorne]
     Full Idea: How could we know that P and Q but not be in a position to know that P (as deniers of closure must say)? If my glass is full of wine, we know 'g is full of wine, and not full of non-wine'. How can we deny that we know it is not full of non-wine?
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: Hawthorne merely raises this doubt. Dretske is concerned with heavyweight implications, but how do you accept lightweight implications like this one, and then suddenly reject them when they become too heavy? [see p.49]
14. Science / B. Scientific Theories / 8. Ramsey Sentences
A Ramsey sentence just asserts that a theory can be realised, without saying by what [Lewis]
     Full Idea: If we specify a theory with all of its terms, and then replace all of those terms with variables, we can then say that some n-tuples of entities can satisfy this formula. This Ramsey sentence then says the theory is realised, without specifying by what.
     From: David Lewis (How to Define Theoretical Terms [1970], II)
     A reaction: [I have compressed Lewis, and cut out the symbolism]
There is a method for defining new scientific terms just using the terms we already understand [Lewis]
     Full Idea: I contend that there is a general method for defining newly introduced terms in a scientific theory, one which uses only the old terms we understood beforehand.
     From: David Lewis (How to Define Theoretical Terms [1970], Intro)
     A reaction: Lewis is game is to provide bridge laws for a reductive account of nature, without having to introduce something entirely new to achieve it. The idea of bridge laws in scientific theory is less in favour these days.
It is better to have one realisation of a theory than many - but it may not always be possible [Lewis]
     Full Idea: A uniquely realised theory is, other things being equal, certainly more satisfactory than a multiply realised theory. We should insist on unique realisation as a standard of correctness unless it is a standard too high to be met.
     From: David Lewis (How to Define Theoretical Terms [1970], III)
     A reaction: The point is that rewriting a theory as Ramsey sentences just says there is at least one realisation, and so it doesn't meet the highest standards for scientific theories. The influence of set-theoretic model theory is obvious in this approach.
The Ramsey sentence of a theory says that it has at least one realisation [Lewis]
     Full Idea: The Ramsey sentence of a theory says that it has at least one realisation.
     From: David Lewis (How to Define Theoretical Terms [1970], V)