Combining Texts

All the ideas for 'The Case for Closure', 'The Limits of Contingency' and 'Philosophical Logic'

unexpand these ideas     |    start again     |     specify just one area for these texts


43 ideas

4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
     Full Idea: Fand P as 'will' and 'was', G as 'always going to be', H as 'always has been', all tenses reduce to 14 cases: the past series, each implying the next, FH,H,PH,HP,P,GP, and the future series PG,G,FG,GF,F,HF, plus GH=HG implying all, FP=PF which all imply.
     From: John P. Burgess (Philosophical Logic [2009], 2.8)
     A reaction: I have tried to translate the fourteen into English, but am not quite confident enough to publish them here. I leave it as an exercise for the reader.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
     Full Idea: In temporal logic, if the converse Barcan formula holds then nothing goes out of existence, and the direct Barcan formula holds if nothing ever comes into existence. These results highlight the intuitive absurdity of the Barcan formulas.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This is my reaction to the modal cases as well - the absurdity of thinking that no actually nonexistent thing might possibly have existed, or that the actual existents might not have existed. Williamson seems to be the biggest friend of the formulas.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
It is still unsettled whether standard intuitionist logic is complete [Burgess]
     Full Idea: The question of the completeness of the full intuitionistic logic for its intended interpretation is not yet fully resolved.
     From: John P. Burgess (Philosophical Logic [2009], 6.9)
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
     Full Idea: From one point of view intuitionistic logic is a part of classical logic, missing one axiom, from another classical logic is a part of intuitionistic logic, missing two connectives, intuitionistic v and →
     From: John P. Burgess (Philosophical Logic [2009], 6.4)
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
     Full Idea: The relevantist logician's → is perhaps expressible by 'if A, then B, for that reason'.
     From: John P. Burgess (Philosophical Logic [2009], 5.8)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing (with Extensionality) guarantees an infinity of sets, just from a single element [Rosen]
     Full Idea: In conjunction with Extensionality, Pairing entails that given a single non-set, infinitely many sets exist.
     From: Gideon Rosen (The Limits of Contingency [2006], 04)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
     Full Idea: Among the more technically oriented a 'logic' no longer means a theory about which forms of argument are valid, but rather means any formalism, regardless of its applications, that resembles original logic enough to be studied by similar methods.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: There doesn't seem to be any great intellectual obligation to be 'technical'. As far as pure logic is concerned, I am very drawn to the computer approach, since I take that to be the original dream of Aristotle and Leibniz - impersonal precision.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
     Full Idea: There are topics of great philosophical interest that classical logic neglects because they are not important to mathematics. …These include distinctions of past, present and future, or of necessary, actual and possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.1)
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
     Full Idea: The Cut rule (from A|-B and B|-C, infer A|-C) directly expresses the classical doctrine that entailment is transitive.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
     Full Idea: Classical logic neglects counterfactual conditionals for the same reason it neglects temporal and modal distinctions, namely, that they play no serious role in mathematics.
     From: John P. Burgess (Philosophical Logic [2009], 4.1)
     A reaction: Science obviously needs counterfactuals, and metaphysics needs modality. Maybe so-called 'classical' logic will be renamed 'basic mathematical logic'. Philosophy will become a lot clearer when that happens.
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
     Full Idea: Philosophical logic is a branch of logic, a technical subject. …Its centre of gravity today lies in theoretical computer science.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: He firmly distinguishes it from 'philosophy of logic', but doesn't spell it out. I take it that philosophical logic concerns metaprinciples which compare logical systems, and suggest new lines of research. Philosophy of logic seems more like metaphysics.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
     Full Idea: When formalising arguments it is convenient to have as many connectives as possible available.; but when proving results about formulas it is convenient to have as few as possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: Illuminating. The fact that you can whittle classical logic down to two (or even fewer!) connectives warms the heart of technicians, but makes connection to real life much more difficult. Hence a bunch of extras get added.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
     Full Idea: Gricean implicature theory might suggest that a disjunction is never assertable when a disjunct is (though actually the disjunction might be 'pertinent') - but the procedure is indispensable in mathematical practice.
     From: John P. Burgess (Philosophical Logic [2009], 5.2)
     A reaction: He gives an example of a proof in maths which needs it, and an unusual conversational occasion where it makes sense.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
     Full Idea: All occurrences of variables in atomic formulas are free.
     From: John P. Burgess (Philosophical Logic [2009], 1.7)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
     Full Idea: By contrast to rigidly designating proper names, …the denotation of definite descriptions is (in general) not rigid but flexible.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This modern way of putting it greatly clarifies why Russell was interested in the type of reference involved in definite descriptions. Obviously some descriptions (such as 'the only person who could ever have…') might be rigid.
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
     Full Idea: There are atomic formulas, and formulas built from the connectives, and that is all. We show that all formulas have some property, first for the atomics, then the others. This proof is 'induction on complexity'; we also use 'recursion on complexity'.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: That is: 'induction on complexity' builds a proof from atomics, via connectives; 'recursion on complexity' breaks down to the atomics, also via the connectives. You prove something by showing it is rooted in simple truths.
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
     Full Idea: It might be wondered how one could have any kind of proof procedure at all if transitivity of entailment is disallowed, but the sequent calculus can get around the difficulty.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
     A reaction: He gives examples where transitivity of entailment (so that you can build endless chains of deductions) might fail. This is the point of the 'cut free' version of sequent calculus, since the cut rule allows transitivity.
We can build one expanding sequence, instead of a chain of deductions [Burgess]
     Full Idea: Instead of demonstrations which are either axioms, or follow from axioms by rules, we can have one ever-growing sequence of formulas of the form 'Axioms |- ______', where the blank is filled by Axioms, then Lemmas, then Theorems, then Corollaries.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
     Full Idea: The valid formulas of classical sentential logic are called 'tautologically valid', or simply 'tautologies'; with other logics 'tautologies' are formulas that are substitution instances of valid formulas of classical sentential logic.
     From: John P. Burgess (Philosophical Logic [2009], 1.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
     Full Idea: Validity (truth by virtue of logical form alone) and demonstrability (provability by virtue of logical form alone) have correlative notions of logical possibility, 'satisfiability' and 'consistency', which come apart in some logics.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
     Full Idea: The aim in setting up a model theory is that the technical notion of truth in all models should agree with the intuitive notion of truth in all instances. A model is supposed to represent everything about an instance that matters for its truth.
     From: John P. Burgess (Philosophical Logic [2009], 3.2)
Models leave out meaning, and just focus on truth values [Burgess]
     Full Idea: Models generally deliberately leave out meaning, retaining only what is important for the determination of truth values.
     From: John P. Burgess (Philosophical Logic [2009], 2.2)
     A reaction: This is the key point to hang on to, if you are to avoid confusing mathematical models with models of things in the real world.
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
     Full Idea: In practice there is no need to consider any but mathematical models, models whose universes consist of mathematical objects, since every model is isomorphic to one of these.
     From: John P. Burgess (Philosophical Logic [2009], 1.8)
     A reaction: The crucial link is the technique of Gödel Numbering, which can translate any verbal formula into numerical form. He adds that, because of the Löwenheim-Skolem theorem only subsets of the natural numbers need be considered.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
     Full Idea: It is a common view that the liar sentence ('This very sentence is not true') is an instance of a truth-value gap (neither true nor false), but some dialethists cite it as an example of a truth-value glut (both true and false).
     From: John P. Burgess (Philosophical Logic [2009], 5.7)
     A reaction: The defence of the glut view must be that it is true, then it is false, then it is true... Could it manage both at once?
9. Objects / A. Existence of Objects / 4. Impossible objects
A Meinongian principle might say that there is an object for any modest class of properties [Rosen]
     Full Idea: Meinongian abstraction principles say that for any (suitably restricted) class of properties, there exists an abstract entity (arbitrary object, subsistent entity) that possesses just those properties.
     From: Gideon Rosen (The Limits of Contingency [2006], 04)
     A reaction: This is 'Meinongian' because there will be an object which is circular and square. The nub of the idea presumably resides in what is meant by 'restricted'. An object possessing every conceivable property is, I guess, a step too far.
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
     Full Idea: There is a problem over 'de re' modality (as contrasted with 'de dicto'), as in ∃x□x. What is meant by '"it is analytic that Px" is satisfied by a', given that analyticity is a notion that in the first instance applies to complete sentences?
     From: John P. Burgess (Philosophical Logic [2009], 3.9)
     A reaction: This is Burgess's summary of one of Quine's original objections. The issue may be a distinction between whether the sentence is analytic, and what makes it analytic. The necessity of bachelors being unmarried makes that sentence analytic.
10. Modality / A. Necessity / 5. Metaphysical Necessity
Metaphysical necessity is absolute and universal; metaphysical possibility is very tolerant [Rosen]
     Full Idea: If P is metaphysically necessary, then it is absolutely necessary, and necessary in every real (non-epistemic) sense; and if P is possible in any sense, then it's possible in the metaphysical sense.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: Rosen's shot at defining metaphysical necessity and possibility, and it looks pretty good to me. In my terms (drawing from Kit Fine) it is what is necessitated or permitted 'by everything'. So if it is necessitated by logic or nature, that's included.
'Metaphysical' modality is the one that makes the necessity or contingency of laws of nature interesting [Rosen]
     Full Idea: 'Metaphysical' modality is the sort of modality relative to which it is an interesting question whether the laws of nature are necessary or contingent.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: Being an essentialist here, I take it that the stuff of the universe necessitates the so-called 'laws'. The metaphysically interesting question is whether the stuff might have been different. Search me! A nice test of metaphysical modality though.
Sets, universals and aggregates may be metaphysically necessary in one sense, but not another [Rosen]
     Full Idea: It may be metaphysically necessary in one sense that sets or universals or mereological aggregates exist, while in another sense existence is always a contingent matter.
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: This idea depends on Idea 18856 and 18857. Personally I only think mereological aggregates and sets exist when people decide that they exist, so I don't see how they could ever be necessary. I'm unconvinced about his two concepts.
Standard Metaphysical Necessity: P holds wherever the actual form of the world holds [Rosen]
     Full Idea: According to the Standard Conception of Metaphysical Necessity, P is metaphysically necessary when it holds in every possible world in which the laws of metaphysics (about the form or structure of the actual world) hold
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: Rosen has a second meaning, in Idea 18856. He thinks it is crucial to see that there are two senses, because many things come out as metaphysically necessary on one concept, but contingent on the other. Interesting....
Non-Standard Metaphysical Necessity: when ¬P is incompatible with the nature of things [Rosen]
     Full Idea: According to the Non-Standard conception of Metaphysical Necessity, P is metaphysically necessary when its negation is logically incompatible with the nature of things.
     From: Gideon Rosen (The Limits of Contingency [2006], 10)
     A reaction: Rosen's new second meaning of the term. My immediate problem is with it resting on being 'logically' incompatible. Are squares 'logically' incompatible with circles? I like the idea that it rests on 'the nature of things'. (Psst! natures = essences)
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
     Full Idea: Logical necessity is a genus with two species. For classical logic the truth-related notion of validity and the proof-related notion of demonstrability, coincide - but they are distinct concept. In some logics they come apart, in intension and extension.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
     A reaction: They coincide in classical logic because it is sound and complete. This strikes me as the correct approach to logical necessity, tying it to the actual nature of logic, rather than some handwavy notion of just 'true in all possible worlds'.
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
     Full Idea: To the extent that there is any conventional wisdom about the question, it is that S5 is correct for alethic logical modality, and S4 correct for apodictic logical modality.
     From: John P. Burgess (Philosophical Logic [2009], 3.8)
     A reaction: In classical logic these coincide, so presumably one should use the minimum system to do the job, which is S4 (?).
Something may be necessary because of logic, but is that therefore a special sort of necessity? [Rosen]
     Full Idea: It is one thing to say that P is necessary in some generic sense because it is a truth of logic (true in all models of a language, perhaps). It is something else to say that P therefore enjoys a special sort of necessity.
     From: Gideon Rosen (The Limits of Contingency [2006], 02)
     A reaction: This encourages my thought that there is only one sort of necessity (what must be), and the variety comes from the different types of necessity makers (everything there could be, nature, duties, promises, logics, concepts...).
10. Modality / B. Possibility / 3. Combinatorial possibility
Combinatorial theories of possibility assume the principles of combination don't change across worlds [Rosen]
     Full Idea: Combinatorial theories of possibility take it for granted ....that possible worlds in general share a syntax, as it were, differing only in the constituents from which they are generated, or in the particular manner of their arrangements.
     From: Gideon Rosen (The Limits of Contingency [2006], 08)
     A reaction: For instance, it might assume that every world has 'objects', to which 'properties' and 'relations' can be attached, or to which 'functions' can apply.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
     Full Idea: Three main theories of the truth of indicative conditionals are Materialism (the conditions are the same as for the material conditional), Idealism (identifying assertability with truth-value), and Nihilism (no truth, just assertability).
     From: John P. Burgess (Philosophical Logic [2009], 4.3)
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
     Full Idea: It is contentious whether conditionals have negations, and whether 'it is not the case that if A,B' has any clear meaning.
     From: John P. Burgess (Philosophical Logic [2009], 4.9)
     A reaction: This seems to be connected to Lewis's proof that a probability conditional cannot be reduced to a single proposition. If a conditional only applies to A-worlds, it is not surprising that its meaning gets lost when it leaves that world.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / a. Conceivable as possible
A proposition is 'correctly' conceivable if an ominiscient being could conceive it [Rosen]
     Full Idea: To a first approximation, P is correctly conceivable iff it would be conceivable for a logically ominiscient being who was fully informed about the nature of things.
     From: Gideon Rosen (The Limits of Contingency [2006], 05)
     A reaction: Isn't the last bit covered by 'ominiscient'? Ah, I think the 'logically' only means they have a perfect grasp of what is consistent. This is to meet the standard problem, of ill-informed people 'conceiving' of things which are actually impossible.
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
Commitment to 'I have a hand' only makes sense in a context where it has been doubted [Hawthorne]
     Full Idea: If I utter 'I know I have a hand' then I can only be reckoned a cooperative conversant by my interlocutors on the assumption that there was a real question as to whether I have a hand.
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: This seems to point to the contextualist approach to global scepticism, which concerns whether we are setting the bar high or low for 'knowledge'.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / c. Knowledge closure
How can we know the heavyweight implications of normal knowledge? Must we distort 'knowledge'? [Hawthorne]
     Full Idea: Those who deny skepticism but accept closure will have to explain how we know the various 'heavyweight' skeptical hypotheses to be false. Do we then twist the concept of knowledge to fit the twin desiderata of closue and anti-skepticism?
     From: John Hawthorne (The Case for Closure [2005], Intro)
     A reaction: [He is giving Dretske's view; Dretske says we do twist knowledge] Thus if I remember yesterday, that has the heavyweight implication that the past is real. Hawthorne nicely summarises why closure produces a philosophical problem.
We wouldn't know the logical implications of our knowledge if small risks added up to big risks [Hawthorne]
     Full Idea: Maybe one cannot know the logical consequences of the proposition that one knows, on account of the fact that small risks add up to big risks.
     From: John Hawthorne (The Case for Closure [2005], 1)
     A reaction: The idea of closure is that the new knowledge has the certainty of logic, and each step is accepted. An array of receding propositions can lose reliability, but that shouldn't apply to logic implications. Assuming monotonic logic, of course.
Denying closure is denying we know P when we know P and Q, which is absurd in simple cases [Hawthorne]
     Full Idea: How could we know that P and Q but not be in a position to know that P (as deniers of closure must say)? If my glass is full of wine, we know 'g is full of wine, and not full of non-wine'. How can we deny that we know it is not full of non-wine?
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: Hawthorne merely raises this doubt. Dretske is concerned with heavyweight implications, but how do you accept lightweight implications like this one, and then suddenly reject them when they become too heavy? [see p.49]
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
The MRL view says laws are the theorems of the simplest and strongest account of the world [Rosen]
     Full Idea: According to the Mill-Ramsey-Lewis account of the laws of nature, a generalisation is a law just in case it is a theorem of every true account of the actual world that achieves the best overall balance of simplicity and strength.
     From: Gideon Rosen (The Limits of Contingency [2006], 08)
     A reaction: The obvious objection is that many of the theorems will be utterly trivial, and that is one thing that the laws of nature are not. Unless you are including 'metaphysical laws' about very very fundamental things, like objects, properties, relations.