Combining Texts

All the ideas for 'The Case for Closure', 'Categories' and 'Mathematics without Foundations'

unexpand these ideas     |    start again     |     specify just one area for these texts


11 ideas

2. Reason / F. Fallacies / 8. Category Mistake / a. Category mistakes
We can't do philosophy without knowledge of types and categories [Ryle]
     Full Idea: We are in the dark about the nature of philosophical problems and methods if we are in the dark about types and categories.
     From: Gilbert Ryle (Categories [1938], p.189), quoted by Ofra Magidor - Category Mistakes 1.2
     A reaction: Magidor and others take this to be an assertion about language and logic, but I take it to be an assertion about reality. It is an early assertion of Schaffer's claim that ontology concerns the structure of existence, and not just what exists.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We understand some statements about all sets [Putnam]
     Full Idea: We seem to understand some statements about all sets (e.g. 'for every set x and every set y, there is a set z which is the union of x and y').
     From: Hilary Putnam (Mathematics without Foundations [1967], p.308)
     A reaction: His example is the Axiom of Choice. Presumably this is why the collection of all sets must be referred to as a 'class', since we can talk about it, but cannot define it.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
I do not believe mathematics either has or needs 'foundations' [Putnam]
     Full Idea: I do not believe mathematics either has or needs 'foundations'.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Agreed that mathematics can function well without foundations (given that the enterprise got started with no thought for such things), the ontology of the subject still strikes me as a major question, though maybe not for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is conceivable that the axioms of arithmetic or propositional logic might be changed [Putnam]
     Full Idea: I believe that under certain circumstances revisions in the axioms of arithmetic, or even of the propositional calculus (e.g. the adoption of a modular logic as a way out of the difficulties in quantum mechanics), is fully conceivable.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: One can change the axioms of a system without necessarily changing the system (by swapping an axiom and a theorem). Especially if platonism is true, since the eternal objects reside calmly above our attempts to axiomatise them!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Maybe mathematics is empirical in that we could try to change it [Putnam]
     Full Idea: Mathematics might be 'empirical' in the sense that one is allowed to try to put alternatives into the field.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: He admits that change is highly unlikely. It take hardcore Millian arithmetic to be only changeable if pebbles start behaving very differently with regard to their quantities, which appears to be almost inconceivable.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Science requires more than consistency of mathematics [Putnam]
     Full Idea: Science demands much more of a mathematical theory than that it should merely be consistent, as the example of the various alternative systems of geometry dramatizes.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Well said. I don't agree with Putnam's Indispensability claims, but if an apparent system of numbers or lines has no application to the world then I don't consider it to be mathematics. It is a new game, like chess.
7. Existence / D. Theories of Reality / 4. Anti-realism
You can't deny a hypothesis a truth-value simply because we may never know it! [Putnam]
     Full Idea: Surely the mere fact that we may never know whether the continuum hypothesis is true or false is by itself just no reason to think that it doesn't have a truth value!
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: This is Putnam in 1967. Things changed later. Personally I am with the younger man all they way, but I reserve the right to totally change my mind.
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
Commitment to 'I have a hand' only makes sense in a context where it has been doubted [Hawthorne]
     Full Idea: If I utter 'I know I have a hand' then I can only be reckoned a cooperative conversant by my interlocutors on the assumption that there was a real question as to whether I have a hand.
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: This seems to point to the contextualist approach to global scepticism, which concerns whether we are setting the bar high or low for 'knowledge'.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / c. Knowledge closure
How can we know the heavyweight implications of normal knowledge? Must we distort 'knowledge'? [Hawthorne]
     Full Idea: Those who deny skepticism but accept closure will have to explain how we know the various 'heavyweight' skeptical hypotheses to be false. Do we then twist the concept of knowledge to fit the twin desiderata of closue and anti-skepticism?
     From: John Hawthorne (The Case for Closure [2005], Intro)
     A reaction: [He is giving Dretske's view; Dretske says we do twist knowledge] Thus if I remember yesterday, that has the heavyweight implication that the past is real. Hawthorne nicely summarises why closure produces a philosophical problem.
We wouldn't know the logical implications of our knowledge if small risks added up to big risks [Hawthorne]
     Full Idea: Maybe one cannot know the logical consequences of the proposition that one knows, on account of the fact that small risks add up to big risks.
     From: John Hawthorne (The Case for Closure [2005], 1)
     A reaction: The idea of closure is that the new knowledge has the certainty of logic, and each step is accepted. An array of receding propositions can lose reliability, but that shouldn't apply to logic implications. Assuming monotonic logic, of course.
Denying closure is denying we know P when we know P and Q, which is absurd in simple cases [Hawthorne]
     Full Idea: How could we know that P and Q but not be in a position to know that P (as deniers of closure must say)? If my glass is full of wine, we know 'g is full of wine, and not full of non-wine'. How can we deny that we know it is not full of non-wine?
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: Hawthorne merely raises this doubt. Dretske is concerned with heavyweight implications, but how do you accept lightweight implications like this one, and then suddenly reject them when they become too heavy? [see p.49]