Combining Texts

All the ideas for 'On What Grounds What', 'talk' and 'Set Theory'

unexpand these ideas     |    start again     |     specify just one area for these texts


24 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Modern Quinean metaphysics is about what exists, but Aristotelian metaphysics asks about grounding [Schaffer,J]
     Full Idea: On the now dominant Quinean view, metaphysics is about what there is (such as properties, meanings and numbers). I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what.
     From: Jonathan Schaffer (On What Grounds What [2009], Intro)
     A reaction: I find that an enormously helpful distinction, and support the Aristotelian view. Schaffer's general line is that what exists is fairly uncontroversial and dull, but the interesting truths about the world emerge when we grasp its structure.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
If you tore the metaphysics out of philosophy, the whole enterprise would collapse [Schaffer,J]
     Full Idea: Traditional metaphysics is so tightly woven into the fabric of philosophy that it cannot be torn out without the whole tapestry unravelling.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
     A reaction: I often wonder why the opponents of metaphysics still continue to do philosophy. I don't see how you address questions of ethics, or philosophy of mathematics (etc) without coming up against highly general and abstract over-questions.
2. Reason / B. Laws of Thought / 6. Ockham's Razor
We should not multiply basic entities, but we can have as many derivative entities as we like [Schaffer,J]
     Full Idea: Occam's Razor should only be understood to concern substances: do not multiply basic entities without necessity. There is no problem with the multiplication of derivative entities - they are an 'ontological free lunch'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The phrase 'ontological free lunch' comes from Armstrong. This is probably what Occam meant. A few extra specks of dust, or even a few more numbers (thank you, Cantor!) don't seem to challenge the principle.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
If 'there are red roses' implies 'there are roses', then 'there are prime numbers' implies 'there are numbers' [Schaffer,J]
     Full Idea: We can automatically infer 'there are roses' from 'there are red roses' (with no shift in the meaning of 'roses'). Likewise one can automatically infer 'there are numbers' from 'there are prime numbers'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: He similarly observes that the atheist's 'God is a fictional character' implies 'there are fictional characters'. Schaffer is not committing to a strong platonism with his claim - merely that the existence of numbers is hardly worth disputing.
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Grounding is unanalysable and primitive, and is the basic structuring concept in metaphysics [Schaffer,J]
     Full Idea: Grounding should be taken as primitive, as per the neo-Aristotelian approach. Grounding is an unanalyzable but needed notion - it is the primitive structuring conception of metaphysics.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
     A reaction: [he cites K.Fine 1991] I find that this simple claim clarifies the discussions of Kit Fine, where you are not always quite sure what the game is. I agree fully with it. It makes metaphysics interesting, where cataloguing entities is boring.
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is just modal correlation [Schaffer,J]
     Full Idea: Supervenience is mere modal correlation.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The cosmos is the only fundamental entity, from which all else exists by abstraction [Schaffer,J]
     Full Idea: My preferred view is that there is only one fundamental entity - the whole concrete cosmos - from which all else exists by abstraction.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: This looks to me like weak anti-realism - that there are no natural 'joints' in nature - but I don't think Schaffer intends that. I take the joints to be fundamentals, which necessitates that the cosmos has parts. His 'abstraction' is clearly a process.
7. Existence / E. Categories / 4. Category Realism
Maybe categories are just the different ways that things depend on basic substances [Schaffer,J]
     Full Idea: Maybe the categories are determined by the different grounding relations, ..so that categories just are the ways things depend on substances. ...Categories are places in the dependence ordering.
     From: Jonathan Schaffer (On What Grounds What [2009], 1.3)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
There exist heaps with no integral unity, so we should accept arbitrary composites in the same way [Schaffer,J]
     Full Idea: I am happy to accept universal composition, on the grounds that there are heaps, piles etc with no integral unity, and that arbitrary composites are no less unified than heaps.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1 n11)
     A reaction: The metaphysical focus is then placed on what constitutes 'integral unity', which is precisely the question which most interested Aristotle. Clearly if there is nothing more to an entity than its components, scattering them isn't destruction.
The notion of 'grounding' can explain integrated wholes in a way that mere aggregates can't [Schaffer,J]
     Full Idea: The notion of grounding my capture a crucial mereological distinction (missing from classical mereology) between an integrated whole with genuine unity, and a mere aggregate. x is an integrated whole if it grounds its proper parts.
     From: Jonathan Schaffer (On What Grounds What [2009], 3.1)
     A reaction: That gives a nice theoretical notion, but if you remove each of the proper parts, does x remain? Is it a bare particular? I take it that it will have to be an abstract principle, the one Aristotle was aiming at with his notion of 'form'. Schaffer agrees.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Belief in impossible worlds may require dialetheism [Schaffer,J]
     Full Idea: One motivation for dialetheism is the view that there are impossible worlds.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
'Moorean certainties' are more credible than any sceptical argument [Schaffer,J]
     Full Idea: A 'Moorean certainty' is when something is more credible than any philosopher's argument to the contrary.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The reference is to G.E. Moore's famous claim that the existence of his hand is more certain than standard sceptical arguments. It sounds empiricist, but they might be parallel rational truths, of basic logic or arithmetic.
15. Nature of Minds / C. Capacities of Minds / 2. Imagination
Understanding is needed for imagination, just as much as the other way around [Betteridge]
     Full Idea: Although it might be right to say that imagination is required in order to make reasoning and understanding possible, this also works the other way, as imagination cannot occur without some prior understanding.
     From: Alex Betteridge (talk [2005]), quoted by PG - Db (ideas)
     A reaction: This strikes me as a very illuminating remark, particularly for anyone who aspires to draw a simplified flowdiagram of the mind showing logical priority between its various parts. In fact, the parts are interdependent. Maybe imagination is understanding.