Combining Texts

All the ideas for 'Deflationary Metaontology of Thomasson', 'Beginning Logic' and 'Mapping the Mind'

unexpand these ideas     |    start again     |     specify just one area for these texts


73 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
'Contradictory' propositions always differ in truth-value [Lemmon]
     Full Idea: Two propositions are 'contradictory' if they are never both true and never both false either, which means that ¬(A↔B) is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
We write the conditional 'if P (antecedent) then Q (consequent)' as P→Q [Lemmon]
     Full Idea: We write 'if P then Q' as P→Q. This is called a 'conditional', with P as its 'antecedent', and Q as its 'consequent'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: P→Q can also be written as ¬P∨Q.
That proposition that either P or Q is their 'disjunction', written P∨Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that either P or Q is called the 'disjunction' of P and Q, and is written P∨Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: This is inclusive-or (meaning 'P, or Q, or both'), and not exlusive-or (Boolean XOR), which means 'P, or Q, but not both'. The ∨ sign is sometimes called 'vel' (Latin).
We write the 'negation' of P (not-P) as ¬ [Lemmon]
     Full Idea: We write 'not-P' as ¬P. This is called the 'negation' of P. The 'double negation' of P (not not-P) would be written as ¬¬P.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: Lemmons use of -P is no longer in use for 'not'. A tilde sign (squiggle) is also used for 'not', but some interpreters give that a subtly different meaning (involving vagueness). The sign ¬ is sometimes called 'hook' or 'corner'.
We write 'P if and only if Q' as P↔Q; it is also P iff Q, or (P→Q)∧(Q→P) [Lemmon]
     Full Idea: We write 'P if and only if Q' as P↔Q. It is called the 'biconditional', often abbreviate in writing as 'iff'. It also says that P is both sufficient and necessary for Q, and may be written out in full as (P→Q)∧(Q→P).
     From: E.J. Lemmon (Beginning Logic [1965], 1.4)
     A reaction: If this symbol is found in a sequence, the first move in a proof is to expand it to the full version.
If A and B are 'interderivable' from one another we may write A -||- B [Lemmon]
     Full Idea: If we say that A and B are 'interderivable' from one another (that is, A |- B and B |- A), then we may write A -||- B.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
That proposition that both P and Q is their 'conjunction', written P∧Q [Lemmon]
     Full Idea: If P and Q are any two propositions, the proposition that both P and Q is called the 'conjunction' of P and Q, and is written P∧Q.
     From: E.J. Lemmon (Beginning Logic [1965], 1.3)
     A reaction: [I use the more fashionable inverted-v '∧', rather than Lemmon's '&', which no longer seems to be used] P∧Q can also be defined as ¬(¬P∨¬Q)
The sign |- may be read as 'therefore' [Lemmon]
     Full Idea: I introduce the sign |- to mean 'we may validly conclude'. To call it the 'assertion sign' is misleading. It may conveniently be read as 'therefore'.
     From: E.J. Lemmon (Beginning Logic [1965], 1.2)
     A reaction: [Actually no gap between the vertical and horizontal strokes of the sign] As well as meaning 'assertion', it may also mean 'it is a theorem that' (with no proof shown).
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'well-formed formula' follows the rules for variables, ¬, →, ∧, ∨, and ↔ [Lemmon]
     Full Idea: A 'well-formed formula' of the propositional calculus is a sequence of symbols which follows the rules for variables, ¬, →, ∧, ∨, and ↔.
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
The 'scope' of a connective is the connective, the linked formulae, and the brackets [Lemmon]
     Full Idea: The 'scope' of a connective in a certain formula is the formulae linked by the connective, together with the connective itself and the (theoretically) encircling brackets
     From: E.J. Lemmon (Beginning Logic [1965], 2.1)
A 'substitution-instance' is a wff formed by consistent replacing variables with wffs [Lemmon]
     Full Idea: A 'substitution-instance' is a wff which results by replacing one or more variables throughout with the same wffs (the same wff replacing each variable).
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
A wff is 'inconsistent' if all assignments to variables result in the value F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value F for all possible assignments of truth-values to its variables, it is said to be 'inconsistent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Contrary' propositions are never both true, so that ¬(A∧B) is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'contrary' if they are never both true, which may be tested by the truth-table for ¬(A∧B), which is a tautology if they are contrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
Two propositions are 'equivalent' if they mirror one another's truth-value [Lemmon]
     Full Idea: Two propositions are 'equivalent' if whenever A is true B is true, and whenever B is true A is true, in which case A↔B is a tautology.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is 'contingent' if produces at least one T and at least one F [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes at least one T and at least one F for all the assignments of truth-values to its variables, it is said to be 'contingent'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
'Subcontrary' propositions are never both false, so that A∨B is a tautology [Lemmon]
     Full Idea: If A and B are expressible in propositional calculus notation, they are 'subcontrary' if they are never both false, which may be tested by the truth-table for A∨B, which is a tautology if they are subcontrary.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'implies' B if B is true whenever A is true (so that A→B is tautologous) [Lemmon]
     Full Idea: One proposition A 'implies' a proposition B if whenever A is true B is true (but not necessarily conversely), which is only the case if A→B is tautologous. Hence B 'is implied' by A.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A wff is a 'tautology' if all assignments to variables result in the value T [Lemmon]
     Full Idea: If a well-formed formula of propositional calculus takes the value T for all possible assignments of truth-values to its variables, it is said to be a 'tautology'.
     From: E.J. Lemmon (Beginning Logic [1965], 2.3)
A 'theorem' is the conclusion of a provable sequent with zero assumptions [Lemmon]
     Full Idea: A 'theorem' of logic is the conclusion of a provable sequent in which the number of assumptions is zero.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is what Quine and others call a 'logical truth'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
∧I: Given A and B, we may derive A∧B [Lemmon]
     Full Idea: And-Introduction (&I): Given A and B, we may derive A∧B as conclusion. This depends on their previous assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
CP: Given a proof of B from A as assumption, we may derive A→B [Lemmon]
     Full Idea: Conditional Proof (CP): Given a proof of B from A as assumption, we may derive A→B as conclusion, on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MPP: Given A and A→B, we may derive B [Lemmon]
     Full Idea: Modus Ponendo Ponens (MPP): Given A and A→B, we may derive B as a conclusion. B will rest on any assumptions that have been made.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
RAA: If assuming A will prove B∧¬B, then derive ¬A [Lemmon]
     Full Idea: Reduction ad Absurdum (RAA): Given a proof of B∧¬B from A as assumption, we may derive ¬A as conclusion, depending on the remaining assumptions (if any).
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
MTT: Given ¬B and A→B, we derive ¬A [Lemmon]
     Full Idea: Modus Tollendo Tollens (MTT): Given ¬B and A→B, we derive ¬A as a conclusion. ¬A depends on any assumptions that have been made
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨I: Given either A or B separately, we may derive A∨B [Lemmon]
     Full Idea: Or-Introduction (∨I): Given either A or B separately, we may derive A∨B as conclusion. This depends on the assumption of the premisses.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∨E: Derive C from A∨B, if C can be derived both from A and from B [Lemmon]
     Full Idea: Or-Elimination (∨E): Given A∨B, we may derive C if it is proved from A as assumption and from B as assumption. This will also depend on prior assumptions.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
DN: Given A, we may derive ¬¬A [Lemmon]
     Full Idea: Double Negation (DN): Given A, we may derive ¬¬A as a conclusion, and vice versa. The conclusion depends on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
A: we may assume any proposition at any stage [Lemmon]
     Full Idea: Assumptions (A): any proposition may be introduced at any stage of a proof.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
∧E: Given A∧B, we may derive either A or B separately [Lemmon]
     Full Idea: And-Elimination (∧E): Given A∧B, we may derive either A or B separately. The conclusions will depend on the assumptions of the premiss.
     From: E.J. Lemmon (Beginning Logic [1965], 1.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Modus tollendo ponens' (MTP) says ¬P, P ∨ Q |- Q [Lemmon]
     Full Idea: 'Modus tollendo ponens' (MTP) says that if a disjunction holds and also the negation of one of its disjuncts, then the other disjunct holds. Thus ¬P, P ∨ Q |- Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
'Modus ponendo tollens' (MPT) says P, ¬(P ∧ Q) |- ¬Q [Lemmon]
     Full Idea: 'Modus ponendo tollens' (MPT) says that if the negation of a conjunction holds and also one of its conjuncts, then the negation of the other conjunct holds. Thus P, ¬(P ∧ Q) |- ¬Q may be introduced as a theorem.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: Unlike Modus Ponens and Modus Tollens, this is a derived rule.
We can change conditionals into negated conjunctions with P→Q -||- ¬(P ∧ ¬Q) [Lemmon]
     Full Idea: The proof that P→Q -||- ¬(P ∧ ¬Q) is useful for enabling us to change conditionals into negated conjunctions
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conditionals into disjunctions with P→Q -||- ¬P ∨ Q [Lemmon]
     Full Idea: The proof that P→Q -||- ¬P ∨ Q is useful for enabling us to change conditionals into disjunctions.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
De Morgan's Laws make negated conjunctions/disjunctions into non-negated disjunctions/conjunctions [Lemmon]
     Full Idea: The forms of De Morgan's Laws [P∨Q -||- ¬(¬P ∧ ¬Q); ¬(P∨Q) -||- ¬P ∧ ¬Q; ¬(P∧Q) -||- ¬P ∨ ¬Q); P∧Q -||- ¬(¬P∨¬Q)] transform negated conjunctions and disjunctions into non-negated disjunctions and conjunctions respectively.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
The Distributive Laws can rearrange a pair of conjunctions or disjunctions [Lemmon]
     Full Idea: The Distributive Laws say that P ∧ (Q∨R) -||- (P∧Q) ∨ (P∧R), and that P ∨ (Q∨R) -||- (P∨Q) ∧ (P∨R)
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
We can change conjunctions into negated conditionals with P→Q -||- ¬(P → ¬Q) [Lemmon]
     Full Idea: The proof that P∧Q -||- ¬(P → ¬Q) is useful for enabling us to change conjunctions into negated conditionals.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth-tables are good for showing invalidity [Lemmon]
     Full Idea: The truth-table approach enables us to show the invalidity of argument-patterns, as well as their validity.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
A truth-table test is entirely mechanical, but this won't work for more complex logic [Lemmon]
     Full Idea: A truth-table test is entirely mechanical, ..and in propositional logic we can even generate proofs mechanically for tautological sequences, ..but this mechanical approach breaks down with predicate calculus, and proof-discovery is an imaginative process.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
4. Formal Logic / B. Propositional Logic PL / 4. Soundness of PL
If any of the nine rules of propositional logic are applied to tautologies, the result is a tautology [Lemmon]
     Full Idea: If any application of the nine derivation rules of propositional logic is made on tautologous sequents, we have demonstrated that the result is always a tautologous sequent. Thus the system is consistent.
     From: E.J. Lemmon (Beginning Logic [1965], 2.4)
     A reaction: The term 'sound' tends to be used now, rather than 'consistent'. See Lemmon for the proofs of each of the nine rules.
4. Formal Logic / B. Propositional Logic PL / 5. Completeness of PL
Propositional logic is complete, since all of its tautologous sequents are derivable [Lemmon]
     Full Idea: A logical system is complete is all expressions of a specified kind are derivable in it. If we specify tautologous sequent-expressions, then propositional logic is complete, because we can show that all tautologous sequents are derivable.
     From: E.J. Lemmon (Beginning Logic [1965], 2.5)
     A reaction: [See Lemmon 2.5 for details of the proofs]
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / a. Symbols of PC
Write '(∀x)(...)' to mean 'take any x: then...', and '(∃x)(...)' to mean 'there is an x such that....' [Lemmon]
     Full Idea: Just as '(∀x)(...)' is to mean 'take any x: then....', so we write '(∃x)(...)' to mean 'there is an x such that....'
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: [Actually Lemmon gives the universal quantifier symbol as '(x)', but the inverted A ('∀') seems to have replaced it these days]
'Gm' says m has property G, and 'Pmn' says m has relation P to n [Lemmon]
     Full Idea: A predicate letter followed by one name expresses a property ('Gm'), and a predicate-letter followed by two names expresses a relation ('Pmn'). We could write 'Pmno' for a complex relation like betweenness.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
The 'symbols' are bracket, connective, term, variable, predicate letter, reverse-E [Lemmon]
     Full Idea: I define a 'symbol' (of the predicate calculus) as either a bracket or a logical connective or a term or an individual variable or a predicate-letter or reverse-E (∃).
     From: E.J. Lemmon (Beginning Logic [1965], 4.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / b. Terminology of PC
Our notation uses 'predicate-letters' (for 'properties'), 'variables', 'proper names', 'connectives' and 'quantifiers' [Lemmon]
     Full Idea: Quantifier-notation might be thus: first, render into sentences about 'properties', and use 'predicate-letters' for them; second, introduce 'variables'; third, introduce propositional logic 'connectives' and 'quantifiers'. Plus letters for 'proper names'.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
Universal Elimination (UE) lets us infer that an object has F, from all things having F [Lemmon]
     Full Idea: Our rule of universal quantifier elimination (UE) lets us infer that any particular object has F from the premiss that all things have F. It is a natural extension of &E (and-elimination), as universal propositions generally affirm a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
With finite named objects, we can generalise with &-Intro, but otherwise we need ∀-Intro [Lemmon]
     Full Idea: If there are just three objects and each has F, then by an extension of &I we are sure everything has F. This is of no avail, however, if our universe is infinitely large or if not all objects have names. We need a new device, Universal Introduction, UI.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
UE all-to-one; UI one-to-all; EI arbitrary-to-one; EE proof-to-one [Lemmon]
     Full Idea: Univ Elim UE - if everything is F, then something is F; Univ Intro UI - if an arbitrary thing is F, everything is F; Exist Intro EI - if an arbitrary thing is F, something is F; Exist Elim EE - if a proof needed an object, there is one.
     From: E.J. Lemmon (Beginning Logic [1965], 3.3)
     A reaction: [My summary of Lemmon's four main rules for predicate calculus] This is the natural deduction approach, of trying to present the logic entirely in terms of introduction and elimination rules. See Bostock on that.
Predicate logic uses propositional connectives and variables, plus new introduction and elimination rules [Lemmon]
     Full Idea: In predicate calculus we take over the propositional connectives and propositional variables - but we need additional rules for handling quantifiers: four rules, an introduction and elimination rule for the universal and existential quantifiers.
     From: E.J. Lemmon (Beginning Logic [1965])
     A reaction: This is Lemmon's natural deduction approach (invented by Gentzen), which is largely built on introduction and elimination rules.
Universal elimination if you start with the universal, introduction if you want to end with it [Lemmon]
     Full Idea: The elimination rule for the universal quantifier concerns the use of a universal proposition as a premiss to establish some conclusion, whilst the introduction rule concerns what is required by way of a premiss for a universal proposition as conclusion.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
     A reaction: So if you start with the universal, you need to eliminate it, and if you start without it you need to introduce it.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
If there is a finite domain and all objects have names, complex conjunctions can replace universal quantifiers [Lemmon]
     Full Idea: If all objects in a given universe had names which we knew and there were only finitely many of them, then we could always replace a universal proposition about that universe by a complex conjunction.
     From: E.J. Lemmon (Beginning Logic [1965], 3.2)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
'Some Frenchmen are generous' is rendered by (∃x)(Fx→Gx), and not with the conditional → [Lemmon]
     Full Idea: It is a common mistake to render 'some Frenchmen are generous' by (∃x)(Fx→Gx) rather than the correct (∃x)(Fx&Gx). 'All Frenchmen are generous' is properly rendered by a conditional, and true if there are no Frenchmen.
     From: E.J. Lemmon (Beginning Logic [1965], 3.1)
     A reaction: The existential quantifier implies the existence of an x, but the universal quantifier does not.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q [Lemmon]
     Full Idea: The paradoxes of material implication are P |- Q → P, and ¬P |- P → Q. That is, since Napoleon was French, then if the moon is blue then Napoleon was French; and since Napoleon was not Chinese, then if Napoleon was Chinese, the moon is blue.
     From: E.J. Lemmon (Beginning Logic [1965], 2.2)
     A reaction: This is why the symbol → does not really mean the 'if...then' of ordinary English. Russell named it 'material implication' to show that it was a distinctively logical operator.
7. Existence / E. Categories / 2. Categorisation
Brain lesions can erase whole categories of perception, suggesting they are hard-wired [Carter,R]
     Full Idea: The discovery that a single brain lesion can erase all knowledge of man-made artefacts, or all knowledge of animals, suggests that these categories somehow hard-wired into the brain - that we all have a set of 'memory pigeonholes'.
     From: Rita Carter (Mapping the Mind [1998], p.190)
     A reaction: Presumably something can become 'hard-wired' through experience, rather than from birth. The whole idea of 'hard-wired' seems misleading about the brain. What matters is that the brain physically constructs categories.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
No sortal could ever exactly pin down which set of particles count as this 'cup' [Schaffer,J]
     Full Idea: Many decent candidates could the referent of this 'cup', differing over whether outlying particles are parts. No further sortal I could invoke will be selective enough to rule out all but one referent for it.
     From: Jonathan Schaffer (Deflationary Metaontology of Thomasson [2009], 3.1 n8)
     A reaction: I never had much faith in sortals for establishing individual identity, so this point comes as no surprise. The implication is strongly realist - that the cup has an identity which is permanently beyond our capacity to specify it.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identities can be true despite indeterminate reference, if true under all interpretations [Schaffer,J]
     Full Idea: There can be determinately true identity claims despite indeterminate reference of the terms flanking the identity sign; these will be identity claims true under all admissible interpretations of the flanking terms.
     From: Jonathan Schaffer (Deflationary Metaontology of Thomasson [2009], 3.1)
     A reaction: In informal contexts there might be problems with the notion of what is 'admissible'. Is 'my least favourite physical object' admissible?
12. Knowledge Sources / B. Perception / 5. Interpretation
Sense organs don't discriminate; they reduce various inputs to the same electrical pulses [Carter,R]
     Full Idea: Despite their variety, each sense organ translates its stimulus into electrical pulses; rather than discriminating one type of input from another, the sense organs actually make them more alike.
     From: Rita Carter (Mapping the Mind [1998], p.174)
     A reaction: An illuminating observation, which modern 'naïve realists' should bear in mind. Secondary qualities are entirely unrelated to the nature of the input, and are merely 'what the brain decides to make of it'. Discrimination is in our neurons.
The recognition sequence is: classify, name, locate, associate, feel [Carter,R, by PG]
     Full Idea: The sequence of events in the brain for perceptual recognition is first identifying a rough class for the object, then a name, then a location, then some associations, and finally an emotion.
     From: report of Rita Carter (Mapping the Mind [1998], p.181) by PG - Db (ideas)
     A reaction: This seems to be one of those places where neuro-science trumps philosophy. You can't argue with empirical research, so philosophical theories had better adapt themselves to this sequence. The big modern discovery is the place of emotion in recognition.
12. Knowledge Sources / E. Direct Knowledge / 4. Memory
There seems to be no dividing line between a memory and a thought [Carter,R]
     Full Idea: It has become clear from research that there is no clear dividing line between a memory and a thought.
     From: Rita Carter (Mapping the Mind [1998], p.308)
     A reaction: This always struck me as an obvious criticism of Descartes, when he claimed that memory was not an essential part of the 'thinking thing'. How can you think or understand without memory of the different phases of your thoughts? No memory, no mind!
15. Nature of Minds / A. Nature of Mind / 7. Animal Minds
No one knows if animals are conscious [Carter,R]
     Full Idea: No one knows if animals are conscious.
     From: Rita Carter (Mapping the Mind [1998], p.155)
     A reaction: This is a report from the front line of brain research, and should be born in mind when over-confident people make pronouncements about this topic. It strikes me as important to grasp that animals MIGHT not be conscious.
15. Nature of Minds / A. Nature of Mind / 8. Brain
Pain doesn't have one brain location, but is linked to attention and emotion [Carter,R]
     Full Idea: Scans show there is no such thing as a pain centre; pain springs mainly from the activation of areas associated with attention and emotion.
     From: Rita Carter (Mapping the Mind [1998], p. 12)
     A reaction: Most brain research points to the complex multi-layered nature of experiences that were traditionally considered simple. We can be distracted from a pain, and an enormous number of factors can affect our degree of dislike of a given pain.
Proper brains appear at seven weeks, and neonates have as many neurons as adults do [Carter,R]
     Full Idea: The main sections of the brain, including the cerebral cortex, are visible within seven weeks of conception, and by the time the child is born the brain contains as many neurons - about 100 billion - as it will have as an adult.
     From: Rita Carter (Mapping the Mind [1998], p. 17)
     A reaction: Of interest in the abortion debate, and also in thinking about personal identity. However, it seems clear that the number of connections, rather than neurons, is what really matters. A small infant may well lack personal identity.
In primates, brain size correlates closely with size of social group [Carter,R]
     Full Idea: Brain size in primates is closely associated with the size of the social group in which the animal lives.
     From: Rita Carter (Mapping the Mind [1998], p.257)
     A reaction: Intriguing. Humans can have huge social groups because of language, which suggests a chicken-or-egg question. Language, intelligence and size of social group must have expanded together in humans.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / c. Parts of consciousness
Consciousness involves awareness, perception, self-awareness, attention and reflection [Carter,R]
     Full Idea: Awareness, perception, self-awareness, attention and reflection are all separate components of consciousness, and the quality of our experience varies according to which and how many of them are present.
     From: Rita Carter (Mapping the Mind [1998], p.300)
     A reaction: Philosophers like to emphasise 'qualia' and 'intentionality'. This remark slices the cake differently. 'Attention' is interesting, dividing consciousness into two areas, with some experience fading away into the darkness. Hume denied self-awareness.
15. Nature of Minds / B. Features of Minds / 1. Consciousness / e. Cause of consciousness
There is enormous evidence that consciousness arises in the frontal lobes of the brain [Carter,R]
     Full Idea: A huge volume of evidence suggests that consciousness emerges from the activity of the cerebral cortex, and in particular from the frontal lobes.
     From: Rita Carter (Mapping the Mind [1998], p.298)
     A reaction: Dualists must face up to this, and even many physicalists have a rather vague notion about the location of awareness, but we are clearly homing in very precise physical substances which have consciousness as a feature.
15. Nature of Minds / B. Features of Minds / 5. Qualia / a. Nature of qualia
Normal babies seem to have overlapping sense experiences [Carter,R]
     Full Idea: Connections in a baby's brain probably give the infant the experience of 'seeing' sounds and 'hearing' colours - which occasionally continues into adulthood, where it is known as 'synaesthesia'.
     From: Rita Carter (Mapping the Mind [1998], p. 19)
     A reaction: A fact to remember when discussing secondary qualities, and the relativism involved in the way we perceive the world. If you have done your philosophy right, you shouldn't be surprised by this discovery.
15. Nature of Minds / B. Features of Minds / 7. Blindsight
In blindsight V1 (normal vision) is inactive, but V5 (movement) lights up [Carter,R]
     Full Idea: Scans show that a sub-section of the visual cortex called V5 - the area that registers movement - lights up during blindsight, even though V1 - the primary sensory area that is essential for normal sight - is not active.
     From: Rita Carter (Mapping the Mind [1998], p.307)
     A reaction: The whole point of blindsight is to make us realise that vision involves not one module, but a whole team of them. The inference is that V1 involves consciousness, but other areas of the visual cortex don't.
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
Out-of-body experiences may be due to temporary loss of proprioception [Carter,R]
     Full Idea: Out-of-body experiences may be due to temporary loss of proprioception.
     From: Rita Carter (Mapping the Mind [1998], p.187)
     A reaction: This is only a speculation, but it is an effect which can be caused by brain injury, and dualists should face the possibility that this evidence (prized by many dualists) can have a physical explanation.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Scans of brains doing similar tasks produce very similar patterns of activation [Carter,R]
     Full Idea: The pattern of brain activation during, say, a word retrieval task is usually similar enough among the dozen or so participants who typically take part in such studies for their scans to be overlaid and still show a clear pattern.
     From: Rita Carter (Mapping the Mind [1998], p. 17)
     A reaction: This doesn't surprise me, though it could be interpreted as supporting type-type identity, or as supporting functionalism. Armstrong and Lewis endorse a sort of reductive functionalism which would fit this observation.
Thinking takes place on the upper side of the prefrontal cortex [Carter,R]
     Full Idea: The nuts and bolts of thinking - holding ideas in mind and manipulating them - takes place on the upper side of the prefrontal cortex.
     From: Rita Carter (Mapping the Mind [1998], p.312)
     A reaction: Keep this firmly in view! Imagine that the skull is transparent, and brain activity moves in waves of colour. Dualism would, in those circumstances, never have even occurred to anyone.
18. Thought / A. Modes of Thought / 3. Emotions / a. Nature of emotions
Babies show highly emotional brain events, but may well be unaware of them [Carter,R]
     Full Idea: Babies show emotion dramatically, but the areas of the brain that in adults are linked to the conscious experience of emotions are not active in newborn babies. Such emotions may therefore be unconscious.
     From: Rita Carter (Mapping the Mind [1998], p. 19)
     A reaction: Traditionally, 'unconscious emotion' is a contradiction, but I think we should accept this new evidence and rethink the nature of mind. Not only might emotion be non-conscious, but we should even consider that rational thinking could be too.
18. Thought / A. Modes of Thought / 3. Emotions / g. Controlling emotions
The only way we can control our emotions is by manipulating the outside world that influences them [Carter,R]
     Full Idea: We try to manipulate our emotions all the time, but all we are doing is arranging the outside world so it triggers certain emotions - we cannot control our reactions directly.
     From: Rita Carter (Mapping the Mind [1998], p.155)
     A reaction: This seems to me to throw a very illuminating light on a huge amount of human behaviour, such as going to the cinema or listening to music. The romantic movement encouraged direct internal manipulation. Compare sex fantasies with viewing pornography.
18. Thought / A. Modes of Thought / 5. Rationality / c. Animal rationality
A frog will starve to death surrounded by dead flies [Carter,R]
     Full Idea: A frog will starve to death surrounded by dead flies.
     From: Rita Carter (Mapping the Mind [1998], p.195)
     A reaction: A nice warning against assuming that rationality is operating when a frog feels hungry and 'decides' to have lunch. We should take comfort from the fact that humans are NOT this stupid, and philosophers should try to accurately describe our gift.
22. Metaethics / C. The Good / 3. Pleasure / d. Sources of pleasure
The 'locus coeruleus' is one of several candidates for the brain's 'pleasure centre' [Carter,R]
     Full Idea: Noradrenaline is an excitatory chemical that induces physical and mental arousal and heightens mood. Production is centred in an area of the brain called the locus coeruleus, which is one of several candidates for the brain's 'pleasure' centre.
     From: Rita Carter (Mapping the Mind [1998], p. 30)
     A reaction: It seems to me very morally desirable that people understand facts of this kind, so that they can be more objective about pleasure. Pleasure is one cog in the machine that makes a person, not the essence of human life.