Combining Texts

All the ideas for 'Deflationary Metaontology of Thomasson', 'Alfred Tarski: life and logic' and 'Introduction to the Philosophy of Mathematics'

unexpand these ideas     |    start again     |     specify just one area for these texts


35 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Cantor's theories needed the Axiom of Choice, but it has led to great controversy [Feferman/Feferman]
     Full Idea: The Axiom of Choice is a pure existence statement, without defining conditions. It was necessary to provide a foundation for Cantor's theory of transfinite cardinals and ordinal numbers, but its nonconstructive character engendered heated controversy.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
The Axiom of Choice is consistent with the other axioms of set theory [Feferman/Feferman]
     Full Idea: In 1938 Gödel proved that the Axiom of Choice is consistent with the other axioms of set theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: Hence people now standardly accept ZFC, rather than just ZF.
The Trichotomy Principle is equivalent to the Axiom of Choice [Feferman/Feferman]
     Full Idea: The Trichotomy Principle (any number is less, equal to, or greater than, another number) turned out to be equivalent to the Axiom of Choice.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: [He credits Sierpinski (1918) with this discovery]
Axiom of Choice: a set exists which chooses just one element each of any set of sets [Feferman/Feferman]
     Full Idea: Zermelo's Axiom of Choice asserts that for any set of non-empty sets that (pairwise) have no elements in common, then there is a set that 'simultaneously chooses' exactly one element from each set. Note that this is an existential claim.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The Axiom is now widely accepted, after much debate in the early years. Even critics of the Axiom turn out to be relying on it.
Platonist will accept the Axiom of Choice, but others want criteria of selection or definition [Feferman/Feferman]
     Full Idea: The Axiom of Choice seems clearly true from the Platonistic point of view, independently of how sets may be defined, but is rejected by those who think such existential claims must show how to pick out or define the object claimed to exist.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int I)
     A reaction: The typical critics are likely to be intuitionists or formalists, who seek for both rigour and a plausible epistemology in our theory.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A structure is a 'model' when the axioms are true. So which of the structures are models? [Feferman/Feferman]
     Full Idea: A structure is said to be a 'model' of an axiom system if each of its axioms is true in the structure (e.g. Euclidean or non-Euclidean geometry). 'Model theory' concerns which structures are models of a given language and axiom system.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This strikes me as the most interesting aspect of mathematical logic, since it concerns the ways in which syntactic proof-systems actually connect with reality. Tarski is the central theoretician here, and his theory of truth is the key.
Tarski and Vaught established the equivalence relations between first-order structures [Feferman/Feferman]
     Full Idea: In the late 1950s Tarski and Vaught defined and established basic properties of the relation of elementary equivalence between two structures, which holds when they make true exactly the same first-order sentences. This is fundamental to model theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: This is isomorphism, which clarifies what a model is by giving identity conditions between two models. Note that it is 'first-order', and presumably founded on classical logic.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says if the sentences are countable, so is the model [Feferman/Feferman]
     Full Idea: The Löwenheim-Skolem Theorem, the earliest in model theory, states that if a countable set of sentences in a first-order language has a model, then it has a countable model.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
     A reaction: There are 'upward' (sentences-to-model) and 'downward' (model-to-sentences) versions of the theory.
Löwenheim-Skolem Theorem, and Gödel's completeness of first-order logic, the earliest model theory [Feferman/Feferman]
     Full Idea: Before Tarski's work in the 1930s, the main results in model theory were the Löwenheim-Skolem Theorem, and Gödel's establishment in 1929 of the completeness of the axioms and rules for the classical first-order predicate (or quantificational) calculus.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a sentence holds in every model of a theory, then it is logically derivable from the theory [Feferman/Feferman]
     Full Idea: Completeness is when, if a sentences holds in every model of a theory, then it is logically derivable from that theory.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int V)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Recursion theory' concerns what can be solved by computing machines [Feferman/Feferman]
     Full Idea: 'Recursion theory' is the subject of what can and cannot be solved by computing machines
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Ch.9)
     A reaction: This because 'recursion' will grind out a result step-by-step, as long as the steps will 'halt' eventually.
Both Principia Mathematica and Peano Arithmetic are undecidable [Feferman/Feferman]
     Full Idea: In 1936 Church showed that Principia Mathematica is undecidable if it is ω-consistent, and a year later Rosser showed that Peano Arithmetic is undecidable, and any consistent extension of it.
     From: Feferman / Feferman (Alfred Tarski: life and logic [2004], Int IV)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
No sortal could ever exactly pin down which set of particles count as this 'cup' [Schaffer,J]
     Full Idea: Many decent candidates could the referent of this 'cup', differing over whether outlying particles are parts. No further sortal I could invoke will be selective enough to rule out all but one referent for it.
     From: Jonathan Schaffer (Deflationary Metaontology of Thomasson [2009], 3.1 n8)
     A reaction: I never had much faith in sortals for establishing individual identity, so this point comes as no surprise. The implication is strongly realist - that the cup has an identity which is permanently beyond our capacity to specify it.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identities can be true despite indeterminate reference, if true under all interpretations [Schaffer,J]
     Full Idea: There can be determinately true identity claims despite indeterminate reference of the terms flanking the identity sign; these will be identity claims true under all admissible interpretations of the flanking terms.
     From: Jonathan Schaffer (Deflationary Metaontology of Thomasson [2009], 3.1)
     A reaction: In informal contexts there might be problems with the notion of what is 'admissible'. Is 'my least favourite physical object' admissible?
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)