Combining Texts

All the ideas for 'On What Grounds What', 'Intro to Non-Classical Logic (1st ed)' and 'On Copernicanism and Relativity of Motion'

unexpand these ideas     |    start again     |     specify just one area for these texts


41 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Modern Quinean metaphysics is about what exists, but Aristotelian metaphysics asks about grounding [Schaffer,J]
     Full Idea: On the now dominant Quinean view, metaphysics is about what there is (such as properties, meanings and numbers). I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what.
     From: Jonathan Schaffer (On What Grounds What [2009], Intro)
     A reaction: I find that an enormously helpful distinction, and support the Aristotelian view. Schaffer's general line is that what exists is fairly uncontroversial and dull, but the interesting truths about the world emerge when we grasp its structure.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
If you tore the metaphysics out of philosophy, the whole enterprise would collapse [Schaffer,J]
     Full Idea: Traditional metaphysics is so tightly woven into the fabric of philosophy that it cannot be torn out without the whole tapestry unravelling.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
     A reaction: I often wonder why the opponents of metaphysics still continue to do philosophy. I don't see how you address questions of ethics, or philosophy of mathematics (etc) without coming up against highly general and abstract over-questions.
2. Reason / B. Laws of Thought / 6. Ockham's Razor
We should not multiply basic entities, but we can have as many derivative entities as we like [Schaffer,J]
     Full Idea: Occam's Razor should only be understood to concern substances: do not multiply basic entities without necessity. There is no problem with the multiplication of derivative entities - they are an 'ontological free lunch'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The phrase 'ontological free lunch' comes from Armstrong. This is probably what Occam meant. A few extra specks of dust, or even a few more numbers (thank you, Cantor!) don't seem to challenge the principle.
3. Truth / A. Truth Problems / 8. Subjective Truth
Choose the true hypothesis, which is the most intelligible one [Leibniz]
     Full Idea: One should choose the more intelligible hypothesis, and the truth is nothing but its intelligibility.
     From: Gottfried Leibniz (On Copernicanism and Relativity of Motion [1689], p.91)
     A reaction: This apparently simple observation strikes me as being rather profound. Our picture of the world is shaped entirely by what is intelligible to us. An odd notion of truth, though. The age of reason. See Idea 13158.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
If 'there are red roses' implies 'there are roses', then 'there are prime numbers' implies 'there are numbers' [Schaffer,J]
     Full Idea: We can automatically infer 'there are roses' from 'there are red roses' (with no shift in the meaning of 'roses'). Likewise one can automatically infer 'there are numbers' from 'there are prime numbers'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: He similarly observes that the atheist's 'God is a fictional character' implies 'there are fictional characters'. Schaffer is not committing to a strong platonism with his claim - merely that the existence of numbers is hardly worth disputing.
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Grounding is unanalysable and primitive, and is the basic structuring concept in metaphysics [Schaffer,J]
     Full Idea: Grounding should be taken as primitive, as per the neo-Aristotelian approach. Grounding is an unanalyzable but needed notion - it is the primitive structuring conception of metaphysics.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
     A reaction: [he cites K.Fine 1991] I find that this simple claim clarifies the discussions of Kit Fine, where you are not always quite sure what the game is. I agree fully with it. It makes metaphysics interesting, where cataloguing entities is boring.
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is just modal correlation [Schaffer,J]
     Full Idea: Supervenience is mere modal correlation.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The cosmos is the only fundamental entity, from which all else exists by abstraction [Schaffer,J]
     Full Idea: My preferred view is that there is only one fundamental entity - the whole concrete cosmos - from which all else exists by abstraction.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: This looks to me like weak anti-realism - that there are no natural 'joints' in nature - but I don't think Schaffer intends that. I take the joints to be fundamentals, which necessitates that the cosmos has parts. His 'abstraction' is clearly a process.
7. Existence / E. Categories / 4. Category Realism
Maybe categories are just the different ways that things depend on basic substances [Schaffer,J]
     Full Idea: Maybe the categories are determined by the different grounding relations, ..so that categories just are the ways things depend on substances. ...Categories are places in the dependence ordering.
     From: Jonathan Schaffer (On What Grounds What [2009], 1.3)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
There exist heaps with no integral unity, so we should accept arbitrary composites in the same way [Schaffer,J]
     Full Idea: I am happy to accept universal composition, on the grounds that there are heaps, piles etc with no integral unity, and that arbitrary composites are no less unified than heaps.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1 n11)
     A reaction: The metaphysical focus is then placed on what constitutes 'integral unity', which is precisely the question which most interested Aristotle. Clearly if there is nothing more to an entity than its components, scattering them isn't destruction.
The notion of 'grounding' can explain integrated wholes in a way that mere aggregates can't [Schaffer,J]
     Full Idea: The notion of grounding my capture a crucial mereological distinction (missing from classical mereology) between an integrated whole with genuine unity, and a mere aggregate. x is an integrated whole if it grounds its proper parts.
     From: Jonathan Schaffer (On What Grounds What [2009], 3.1)
     A reaction: That gives a nice theoretical notion, but if you remove each of the proper parts, does x remain? Is it a bare particular? I take it that it will have to be an abstract principle, the one Aristotle was aiming at with his notion of 'form'. Schaffer agrees.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Belief in impossible worlds may require dialetheism [Schaffer,J]
     Full Idea: One motivation for dialetheism is the view that there are impossible worlds.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
'Moorean certainties' are more credible than any sceptical argument [Schaffer,J]
     Full Idea: A 'Moorean certainty' is when something is more credible than any philosopher's argument to the contrary.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The reference is to G.E. Moore's famous claim that the existence of his hand is more certain than standard sceptical arguments. It sounds empiricist, but they might be parallel rational truths, of basic logic or arithmetic.
14. Science / D. Explanation / 3. Best Explanation / a. Best explanation
The Copernican theory is right because it is the only one offering a good explanation [Leibniz]
     Full Idea: The Copernican account is the truest theory, that is, the most intelligible theory and the only one capable of an explanation sufficient for a person of sound reason.
     From: Gottfried Leibniz (On Copernicanism and Relativity of Motion [1689], p.92)
     A reaction: The word 'intelligible' here seems to be linked to the notion of a best explanation.