Combining Texts

All the ideas for 'On What Grounds What', 'The Philosophy of Mathematics' and 'Grundgesetze der Arithmetik 2 (Basic Laws)'

unexpand these ideas     |    start again     |     specify just one area for these texts


31 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Modern Quinean metaphysics is about what exists, but Aristotelian metaphysics asks about grounding [Schaffer,J]
     Full Idea: On the now dominant Quinean view, metaphysics is about what there is (such as properties, meanings and numbers). I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what.
     From: Jonathan Schaffer (On What Grounds What [2009], Intro)
     A reaction: I find that an enormously helpful distinction, and support the Aristotelian view. Schaffer's general line is that what exists is fairly uncontroversial and dull, but the interesting truths about the world emerge when we grasp its structure.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
If you tore the metaphysics out of philosophy, the whole enterprise would collapse [Schaffer,J]
     Full Idea: Traditional metaphysics is so tightly woven into the fabric of philosophy that it cannot be torn out without the whole tapestry unravelling.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
     A reaction: I often wonder why the opponents of metaphysics still continue to do philosophy. I don't see how you address questions of ethics, or philosophy of mathematics (etc) without coming up against highly general and abstract over-questions.
2. Reason / B. Laws of Thought / 6. Ockham's Razor
We should not multiply basic entities, but we can have as many derivative entities as we like [Schaffer,J]
     Full Idea: Occam's Razor should only be understood to concern substances: do not multiply basic entities without necessity. There is no problem with the multiplication of derivative entities - they are an 'ontological free lunch'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The phrase 'ontological free lunch' comes from Armstrong. This is probably what Occam meant. A few extra specks of dust, or even a few more numbers (thank you, Cantor!) don't seem to challenge the principle.
2. Reason / D. Definition / 2. Aims of Definition
Later Frege held that definitions must fix a function's value for every possible argument [Frege, by Wright,C]
     Full Idea: Frege later became fastidious about definitions, and demanded that they must provide for every possible case, and that no function is properly determined unless its value is fixed for every conceivable object as argument.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xiv
     A reaction: Presumably definitions come in degrees of completeness, but it seems harsh to describe a desire for the perfect definition as 'fastidious', especially if we are talking about mathematics, rather than defining 'happiness'.
2. Reason / D. Definition / 7. Contextual Definition
We can't define a word by defining an expression containing it, as the remaining parts are a problem [Frege]
     Full Idea: Given the reference (bedeutung) of an expression and a part of it, obviously the reference of the remaining part is not always determined. So we may not define a symbol or word by defining an expression in which it occurs, whose remaining parts are known
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §66)
     A reaction: Dummett cites this as Frege's rejection of contextual definitions, which he had employed in the Grundlagen. I take it not so much that they are wrong, as that Frege decided to set the bar a bit higher.
2. Reason / D. Definition / 11. Ostensive Definition
Only what is logically complex can be defined; what is simple must be pointed to [Frege]
     Full Idea: Only what is logically complex can be defined; what is simple can only be pointed to.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §180), quoted by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.137
     A reaction: Frege presumably has in mind his treasured abstract objects, such as cardinal numbers. It is hard to see how you could 'point to' anything in the phenomenal world that had atomic simplicity. Hodes calls this a 'desperate Kantian move'.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZF set theory has variables which range over sets, 'equals' and 'member', and extensionality [Dummett]
     Full Idea: ZF set theory is a first-order axiomatization. Variables range over sets, there are no second-order variables, and primitive predicates are just 'equals' and 'member of'. The axiom of extensionality says sets with the same members are identical.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 7)
     A reaction: If the eleven members of the cricket team are the same as the eleven members of the hockey team, is the cricket team the same as the hockey team? Our cricket team is better than our hockey team, so different predicates apply to them.
The main alternative to ZF is one which includes looser classes as well as sets [Dummett]
     Full Idea: The main alternative to ZF is two-sorted theories, with some variables ranging over classes. Classes have more generous existence assumptions: there is a universal class, containing all sets, and a class containing all ordinals. Classes are not members.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 7.1.1)
     A reaction: My intuition is to prefer strict systems when it comes to logical theories. The whole point is precision. Otherwise we could just think about things, and skip all this difficult symbolic stuff.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Intuitionists reject excluded middle, not for a third value, but for possibility of proof [Dummett]
     Full Idea: It must not be concluded from the rejection of excluded middle that intuitionistic logic operates with three values: true, false, and neither true nor false. It does not make use of true and false, but only with a construction being a proof.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 8.1)
     A reaction: This just sounds like verificationism to me, with all its problems. It seems to make speculative statements meaningless, which can't be right. Realism has lots of propositions which are assumed to be true or false, but also unknowable.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
First-order logic concerns objects; second-order adds properties, kinds, relations and functions [Dummett]
     Full Idea: First-order logic is distinguished by generalizations (quantification) only over objects: second-order logic admits generalizations or quantification over properties or kinds of objects, and over relations between them, and functions defined over them.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Second-order logic was introduced by Frege, but is (interestingly) rejected by Quine, because of the ontological commitments involved. I remain unconvinced that quantification entails ontological commitment, so I'm happy.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths and inference are characterized either syntactically or semantically [Dummett]
     Full Idea: There are two ways of characterizing logical truths and correct inference. Proof-theoretic or syntactic characterizations, if the formalization admits of proof or derivation; and model-theoretic or semantic versions, being true in all interpretations.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 3.1)
     A reaction: Dummett calls this distinction 'fundamental'. The second one involves truth, and hence meaning, where the first one just responds to rules. ..But how can you have a notion of correctly following a rule, without a notion of truth?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cardinals say how many, and reals give measurements compared to a unit quantity [Frege]
     Full Idea: The cardinals and the reals are completely disjoint domains. The cardinal numbers answer the question 'How many objects of a given kind are there?', but the real numbers are for measurement, saying how large a quantity is compared to a unit quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §157), quoted by Michael Dummett - Frege philosophy of mathematics Ch.19
     A reaction: We might say that cardinals are digital and reals are analogue. Frege is unusual in totally separating them. They map onto one another, after all. Cardinals look like special cases of reals. Reals are dreams about the gaps between cardinals.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Ordinals seem more basic than cardinals, since we count objects in sequence [Dummett]
     Full Idea: It can be argued that the notion of ordinal numbers is more fundamental than that of cardinals. To count objects, we must count them in sequence. ..The theory of ordinals forms the substratum of Cantor's theory of cardinals.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 5)
     A reaction: Depends what you mean by 'fundamental'. I would take cardinality to be psychologically prior ('that is a lot of sheep'). You can't order people by height without first acquiring some people with differing heights. I vote for cardinals.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers are ratios of quantities [Frege, by Dummett]
     Full Idea: Frege fixed on construing real numbers as ratios of quantities (in agreement with Newton).
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege philosophy of mathematics Ch.20
     A reaction: If 3/4 is the same real number as 6/8, which is the correct ratio? Why doesn't the square root of 9/16 also express it? Why should irrationals be so utterly different from rationals? In what sense are they both 'numbers'?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A number is a class of classes of the same cardinality [Frege, by Dummett]
     Full Idea: For Frege, in 'Grundgesetze', a number is a class of classes of the same cardinality.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Michael Dummett - Frege Philosophy of Language (2nd ed) Ch.14
Frege's biggest error is in not accounting for the senses of number terms [Hodes on Frege]
     Full Idea: The inconsistency of Grundgesetze was only a minor flaw. Its fundamental flaw was its inability to account for the way in which the senses of number terms are determined. It leaves the reference-magnetic nature of the standard numberer a mystery.
     From: comment on Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903]) by Harold Hodes - Logicism and Ontological Commits. of Arithmetic p.139
     A reaction: A point also made by Hofweber. As a logician, Frege was only concerned with the inferential role of number terms, and he felt he had captured their logical form, but it is when you come to look at numbers in natural language that he seem in trouble.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The number 4 has different positions in the naturals and the wholes, with the same structure [Dummett]
     Full Idea: The number 4 cannot be characterized solely by its position in a system, because it has different positions in the system of natural numbers and that of the positive whole numbers, whereas these systems have the very same structure.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 6.1)
     A reaction: Dummett seems to think this is fairly decisive against structuralism. There is also the structure of the real numbers. We will solve this by saying that the wholes are abstracted from the naturals, which are abstracted from the reals. Job done.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
If 'there are red roses' implies 'there are roses', then 'there are prime numbers' implies 'there are numbers' [Schaffer,J]
     Full Idea: We can automatically infer 'there are roses' from 'there are red roses' (with no shift in the meaning of 'roses'). Likewise one can automatically infer 'there are numbers' from 'there are prime numbers'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: He similarly observes that the atheist's 'God is a fictional character' implies 'there are fictional characters'. Schaffer is not committing to a strong platonism with his claim - merely that the existence of numbers is hardly worth disputing.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism misunderstands applications, metatheory, and infinity [Frege, by Dummett]
     Full Idea: Frege's three main objections to radical formalism are that it cannot account for the application of mathematics, that it confuses a formal theory with its metatheory, and it cannot explain an infinite sequence.
     From: report of Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §86-137) by Michael Dummett - Frege philosophy of mathematics
     A reaction: The application is because we don't design maths randomly, but to be useful. The third objection might be dealt with by potential infinities (from formal rules). The second objection sounds promising.
Only applicability raises arithmetic from a game to a science [Frege]
     Full Idea: It is applicability alone which elevates arithmetic from a game to the rank of a science.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §91), quoted by Stewart Shapiro - Thinking About Mathematics 6.1.2
     A reaction: This is the basic objection to Formalism. It invites the question of why it is applicable, which platonists like Frege don't seem to answer (though Plato himself has reality modelled on the Forms). This is why I like structuralism.
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Grounding is unanalysable and primitive, and is the basic structuring concept in metaphysics [Schaffer,J]
     Full Idea: Grounding should be taken as primitive, as per the neo-Aristotelian approach. Grounding is an unanalyzable but needed notion - it is the primitive structuring conception of metaphysics.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
     A reaction: [he cites K.Fine 1991] I find that this simple claim clarifies the discussions of Kit Fine, where you are not always quite sure what the game is. I agree fully with it. It makes metaphysics interesting, where cataloguing entities is boring.
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is just modal correlation [Schaffer,J]
     Full Idea: Supervenience is mere modal correlation.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The cosmos is the only fundamental entity, from which all else exists by abstraction [Schaffer,J]
     Full Idea: My preferred view is that there is only one fundamental entity - the whole concrete cosmos - from which all else exists by abstraction.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: This looks to me like weak anti-realism - that there are no natural 'joints' in nature - but I don't think Schaffer intends that. I take the joints to be fundamentals, which necessitates that the cosmos has parts. His 'abstraction' is clearly a process.
7. Existence / E. Categories / 4. Category Realism
Maybe categories are just the different ways that things depend on basic substances [Schaffer,J]
     Full Idea: Maybe the categories are determined by the different grounding relations, ..so that categories just are the ways things depend on substances. ...Categories are places in the dependence ordering.
     From: Jonathan Schaffer (On What Grounds What [2009], 1.3)
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
The first demand of logic is of a sharp boundary [Frege]
     Full Idea: The first demand of logic is of a sharp boundary.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §160), quoted by Michael Dummett - Frege philosophy of mathematics Ch.22
     A reaction: Nothing I have read about vagueness has made me doubt Frege's view of this, although precisification might allow you to do logic with vague concepts without having to finally settle where the actual boundaries are.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
There exist heaps with no integral unity, so we should accept arbitrary composites in the same way [Schaffer,J]
     Full Idea: I am happy to accept universal composition, on the grounds that there are heaps, piles etc with no integral unity, and that arbitrary composites are no less unified than heaps.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1 n11)
     A reaction: The metaphysical focus is then placed on what constitutes 'integral unity', which is precisely the question which most interested Aristotle. Clearly if there is nothing more to an entity than its components, scattering them isn't destruction.
The notion of 'grounding' can explain integrated wholes in a way that mere aggregates can't [Schaffer,J]
     Full Idea: The notion of grounding my capture a crucial mereological distinction (missing from classical mereology) between an integrated whole with genuine unity, and a mere aggregate. x is an integrated whole if it grounds its proper parts.
     From: Jonathan Schaffer (On What Grounds What [2009], 3.1)
     A reaction: That gives a nice theoretical notion, but if you remove each of the proper parts, does x remain? Is it a bare particular? I take it that it will have to be an abstract principle, the one Aristotle was aiming at with his notion of 'form'. Schaffer agrees.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Belief in impossible worlds may require dialetheism [Schaffer,J]
     Full Idea: One motivation for dialetheism is the view that there are impossible worlds.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
'Moorean certainties' are more credible than any sceptical argument [Schaffer,J]
     Full Idea: A 'Moorean certainty' is when something is more credible than any philosopher's argument to the contrary.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The reference is to G.E. Moore's famous claim that the existence of his hand is more certain than standard sceptical arguments. It sounds empiricist, but they might be parallel rational truths, of basic logic or arithmetic.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
The modern account of real numbers detaches a ratio from its geometrical origins [Frege]
     Full Idea: From geometry we retain the interpretation of a real number as a ratio of quantities or measurement-number; but in more recent times we detach it from geometrical quantities, and from all particular types of quantity.
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §159), quoted by Michael Dummett - Frege philosophy of mathematics
     A reaction: Dummett glosses the 'recent' version as by Cantor and Dedekind in 1872. This use of 'detach' seems to me startlingly like the sort of psychological abstractionism which Frege was so desperate to avoid.
18. Thought / E. Abstraction / 8. Abstractionism Critique
If we abstract the difference between two houses, they don't become the same house [Frege]
     Full Idea: If abstracting from the difference between my house and my neighbour's, I were to regard both houses as mine, the defect of the abstraction would soon be made clear. It may, though, be possible to obtain a concept by means of abstraction...
     From: Gottlob Frege (Grundgesetze der Arithmetik 2 (Basic Laws) [1903], §99)
     A reaction: Note the important concession at the end, which shows Frege could never deny the abstraction process, despite all the modern protests by Geach and Dummett that he totally rejected it.