Combining Texts

All the ideas for 'On What Grounds What', 'Continuity and Irrational Numbers' and 'Investigations in the Foundations of Set Theory I'

unexpand these ideas     |    start again     |     specify just one area for these texts


30 ideas

1. Philosophy / E. Nature of Metaphysics / 1. Nature of Metaphysics
Modern Quinean metaphysics is about what exists, but Aristotelian metaphysics asks about grounding [Schaffer,J]
     Full Idea: On the now dominant Quinean view, metaphysics is about what there is (such as properties, meanings and numbers). I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what.
     From: Jonathan Schaffer (On What Grounds What [2009], Intro)
     A reaction: I find that an enormously helpful distinction, and support the Aristotelian view. Schaffer's general line is that what exists is fairly uncontroversial and dull, but the interesting truths about the world emerge when we grasp its structure.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
If you tore the metaphysics out of philosophy, the whole enterprise would collapse [Schaffer,J]
     Full Idea: Traditional metaphysics is so tightly woven into the fabric of philosophy that it cannot be torn out without the whole tapestry unravelling.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
     A reaction: I often wonder why the opponents of metaphysics still continue to do philosophy. I don't see how you address questions of ethics, or philosophy of mathematics (etc) without coming up against highly general and abstract over-questions.
2. Reason / B. Laws of Thought / 6. Ockham's Razor
We should not multiply basic entities, but we can have as many derivative entities as we like [Schaffer,J]
     Full Idea: Occam's Razor should only be understood to concern substances: do not multiply basic entities without necessity. There is no problem with the multiplication of derivative entities - they are an 'ontological free lunch'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The phrase 'ontological free lunch' comes from Armstrong. This is probably what Occam meant. A few extra specks of dust, or even a few more numbers (thank you, Cantor!) don't seem to challenge the principle.
2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
     Full Idea: On Zermelo's view, predicative definitions are not only indispensable to mathematics, but they are unobjectionable since they do not create the objects they define, but merely distinguish them from other objects.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Shaughan Lavine - Understanding the Infinite V.1
     A reaction: This seems to have an underlying platonism, that there are hitherto undefined 'objects' lying around awaiting the honour of being defined. Hm.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
     Full Idea: Starting from set theory as it is historically given ...we must, on the one hand, restrict these principles sufficiently to exclude as contradiction and, on the other, take them sufficiently wide to retain all that is valuable in this theory.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: Maddy calls this the one-step-back-from-disaster rule of thumb. Zermelo explicitly mentions the 'Russell antinomy' that blocked Frege's approach to sets.
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
     Full Idea: Set theory is that branch whose task is to investigate mathematically the fundamental notions 'number', 'order', and 'function', taking them in their pristine, simple form, and to develop thereby the logical foundations of all of arithmetic and analysis.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: At this point Zermelo seems to be a logicist. Right from the start set theory was meant to be foundational to mathematics, and not just a study of the logic of collections.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
     Full Idea: Zermelo-Fraenkel axioms: Existence (at least one set); Extension (same elements, same set); Specification (a condition creates a new set); Pairing (two sets make a set); Unions; Powers (all subsets make a set); Infinity (set of successors); Choice
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
     Full Idea: Zermelo proposed his listed of assumptions (including the controversial Axiom of Choice) in 1908, in order to secure his controversial proof of Cantor's claim that ' we can always bring any well-defined set into the form of a well-ordered set'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1
     A reaction: This is interesting because it sometimes looks as if axiom systems are just a way of tidying things up. Presumably it is essential to get people to accept the axioms in their own right, the 'old-fashioned' approach that they be self-evident.
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
     Full Idea: I intend to show how the entire theory created by Cantor and Dedekind can be reduced to a few definitions and seven principles, or axioms, which appear to be mutually independent.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: The number of axioms crept up to nine or ten in subsequent years. The point of axioms is maximum reduction and independence from one another. He says nothing about self-evidence (though Boolos claimed a degree of that).
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
     Full Idea: Zermelo's Pairing Axiom superseded (in 1930) his original 1908 Axiom of Elementary Sets. Like Union, its only justification seems to rest on 'limitations of size' and on the 'iterative conception'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Maddy says of this and Union, that they seem fairly obvious, but that their justification is of prime importance, if we are to understand what the axioms should be.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
     Full Idea: Zermelo used a weak form of the Axiom of Foundation to block Russell's paradox in 1906, but in 1908 felt that the form of his Separation Axiom was enough by itself, and left the earlier axiom off his published list.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.2
     A reaction: Foundation turns out to be fairly controversial. Barwise actually proposes Anti-Foundation as an axiom. Foundation seems to be the rock upon which the iterative view of sets is built. Foundation blocks infinite descending chains of sets, and circularity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
     Full Idea: Zermelo assumes that not every predicate has an extension but rather that given a set we may separate out from it those of its members satisfying the predicate. This is called 'separation' (Aussonderung).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
     Full Idea: The most characteristic Zermelo axiom is Separation, guided by a new rule of thumb: 'one step back from disaster' - principles of set generation should be as strong as possible short of contradiction.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.4
     A reaction: Why is there an underlying assumption that we must have as many sets as possible? We are then tempted to abolish axioms like Foundation, so that we can have even more sets!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
     Full Idea: In Zermelo's set theory, the Burali-Forti Paradox becomes a proof that there is no set of all ordinals (so 'is an ordinal' has no extension).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
     Full Idea: It then only remained to discover its true origin in the elements of arithmetic and thus at the same time to secure a real definition of the essence of continuity.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], Intro)
     A reaction: [He seeks the origin of the theorem that differential calculus deals with continuous magnitude, and he wants an arithmetical rather than geometrical demonstration; the result is his famous 'cut'].
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
     Full Idea: Whenever we have to do a cut produced by no rational number, we create a new, an irrational number, which we regard as completely defined by this cut.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §4)
     A reaction: Fine quotes this to show that the Dedekind Cut creates the irrational numbers, rather than hitting them. A consequence is that the irrational numbers depend on the rational numbers, and so can never be identical with any of them. See Idea 10573.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
     Full Idea: I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself is nothing else than the successive creation of the infinite series of positive integers.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §1)
     A reaction: Thus counting roots arithmetic in the world, the successor operation is the essence of counting, and the Dedekind-Peano axioms are built around successors, and give the essence of arithmetic. Unfashionable now, but I love it. Intransitive counting?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
     Full Idea: If in the variation of a magnitude x we can for every positive magnitude δ assign a corresponding position from and after which x changes by less than δ then x approaches a limiting value.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], p.27), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.7
     A reaction: [Kitcher says he 'showed' this, rather than just stating it]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
     Full Idea: For Zermelo the successor of n is {n} (rather than Von Neumann's successor, which is n U {n}).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
     A reaction: I could ask some naive questions about the comparison of these two, but I am too shy about revealing my ignorance.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
     Full Idea: Zermelo was a reductionist, and believed that theorems purportedly about numbers (cardinal or ordinal) are really about sets, and since Von Neumann's definitions of ordinals and cardinals as sets, this has become common doctrine.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.8
     A reaction: Frege has a more sophisticated take on this approach. It may just be an updating of the Greek idea that arithmetic is about treating many things as a unit. A set bestows an identity on a group, and that is all that is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
     Full Idea: In Zermelo's set-theoretic definition of number, 2 is a member of 3, but not a member of 4; in Von Neumann's definition every number is a member of every larger number. This means they have two different structures.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by James Robert Brown - Philosophy of Mathematics Ch. 4
     A reaction: This refers back to the dilemma highlighted by Benacerraf, which was supposed to be the motivation for structuralism. My intuition says that the best answer is that they are both wrong. In a pattern, the nodes aren't 'members' of one another.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
If 'there are red roses' implies 'there are roses', then 'there are prime numbers' implies 'there are numbers' [Schaffer,J]
     Full Idea: We can automatically infer 'there are roses' from 'there are red roses' (with no shift in the meaning of 'roses'). Likewise one can automatically infer 'there are numbers' from 'there are prime numbers'.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: He similarly observes that the atheist's 'God is a fictional character' implies 'there are fictional characters'. Schaffer is not committing to a strong platonism with his claim - merely that the existence of numbers is hardly worth disputing.
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Grounding is unanalysable and primitive, and is the basic structuring concept in metaphysics [Schaffer,J]
     Full Idea: Grounding should be taken as primitive, as per the neo-Aristotelian approach. Grounding is an unanalyzable but needed notion - it is the primitive structuring conception of metaphysics.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
     A reaction: [he cites K.Fine 1991] I find that this simple claim clarifies the discussions of Kit Fine, where you are not always quite sure what the game is. I agree fully with it. It makes metaphysics interesting, where cataloguing entities is boring.
7. Existence / C. Structure of Existence / 5. Supervenience / a. Nature of supervenience
Supervenience is just modal correlation [Schaffer,J]
     Full Idea: Supervenience is mere modal correlation.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.2)
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
The cosmos is the only fundamental entity, from which all else exists by abstraction [Schaffer,J]
     Full Idea: My preferred view is that there is only one fundamental entity - the whole concrete cosmos - from which all else exists by abstraction.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: This looks to me like weak anti-realism - that there are no natural 'joints' in nature - but I don't think Schaffer intends that. I take the joints to be fundamentals, which necessitates that the cosmos has parts. His 'abstraction' is clearly a process.
7. Existence / E. Categories / 4. Category Realism
Maybe categories are just the different ways that things depend on basic substances [Schaffer,J]
     Full Idea: Maybe the categories are determined by the different grounding relations, ..so that categories just are the ways things depend on substances. ...Categories are places in the dependence ordering.
     From: Jonathan Schaffer (On What Grounds What [2009], 1.3)
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
There exist heaps with no integral unity, so we should accept arbitrary composites in the same way [Schaffer,J]
     Full Idea: I am happy to accept universal composition, on the grounds that there are heaps, piles etc with no integral unity, and that arbitrary composites are no less unified than heaps.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1 n11)
     A reaction: The metaphysical focus is then placed on what constitutes 'integral unity', which is precisely the question which most interested Aristotle. Clearly if there is nothing more to an entity than its components, scattering them isn't destruction.
The notion of 'grounding' can explain integrated wholes in a way that mere aggregates can't [Schaffer,J]
     Full Idea: The notion of grounding my capture a crucial mereological distinction (missing from classical mereology) between an integrated whole with genuine unity, and a mere aggregate. x is an integrated whole if it grounds its proper parts.
     From: Jonathan Schaffer (On What Grounds What [2009], 3.1)
     A reaction: That gives a nice theoretical notion, but if you remove each of the proper parts, does x remain? Is it a bare particular? I take it that it will have to be an abstract principle, the one Aristotle was aiming at with his notion of 'form'. Schaffer agrees.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Belief in impossible worlds may require dialetheism [Schaffer,J]
     Full Idea: One motivation for dialetheism is the view that there are impossible worlds.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.3)
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
'Moorean certainties' are more credible than any sceptical argument [Schaffer,J]
     Full Idea: A 'Moorean certainty' is when something is more credible than any philosopher's argument to the contrary.
     From: Jonathan Schaffer (On What Grounds What [2009], 2.1)
     A reaction: The reference is to G.E. Moore's famous claim that the existence of his hand is more certain than standard sceptical arguments. It sounds empiricist, but they might be parallel rational truths, of basic logic or arithmetic.